Эквивалентные бесконечно малые
Сравнение бесконечно малых функций, их определение. Некоторые эквивалентные бесконечно малые функции при x>0. Раскрытие неопределенностей. Свойства функций, непрерывных на отрезке. Основные соотношения, их доказательство и примеры решений задач.
Рубрика | Математика |
Вид | презентация |
Язык | русский |
Дата добавления | 16.10.2014 |
Размер файла | 810,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.
Подобные документы
Свойства бесконечно малых величин. Произведение бесконечно малой величины на ограниченную функцию. Предел функции f(x) при x, стремящимся к бесконечности: теорема и ее доказательство. Пример решения функции и предел отношения двух малых величин.
презентация [61,7 K], добавлен 21.09.2013Предел последовательности, его графическое изображение. Основные свойства сходящихся последовательностей. Бесконечно большие и бесконечно малые функции, связь между функций, ее приделом и бесконечно малой функцией. Первый и второй замечательный предел.
контрольная работа [152,0 K], добавлен 14.05.2009Теоретические аспекты применения правил Лопиталя. Определение предела функции в точке. Понятия бесконечно большой и бесконечно малой функций. Рассмотрение содержания теорем о дифференцируемых функциях. Раскрытие неопределенностей по правилу Лопиталя.
курсовая работа [1,3 M], добавлен 30.12.2021Предел числовой последовательности. Сравнение бесконечно малых величин. Второй замечательный предел. Теорема Коши о сходимости числовой последовательности. Использование бинома Ньютона. Замена сомножителей на эквивалентные им более простые величины.
контрольная работа [152,1 K], добавлен 11.08.2009Пределы функций и их основные свойства, операция предельного перехода, бесконечно малые функции. Производная функции, важнейшие правила дифференцирования, правило Лопиталя. Применение дифференциала функции в приближенных вычислениях, построение графиков.
методичка [335,2 K], добавлен 18.05.2010Определение второго замечательного предела. Понятие бесконечно малых функций. Математическое описание непрерывности зависимости одной переменной величины от другой в точке. Точки разрыва функции. Свойства и непрерывность ее в интервале и на отрезке.
презентация [314,4 K], добавлен 14.11.2014Множество как ключевой объект математики, теории множеств и логики. Операции над множествами, числовые последовательности. Множества действительных чисел. Бесконечно малые и большие функции. Непрерывность функции в точке. Свойства непрерывных функций.
лекция [540,0 K], добавлен 25.03.2012Основные свойства функций, для которых существуют пределы. Понятие бесконечно малых величин и их суммы. Предел алгебраической суммы, разности и произведения конечного числа функций. Предел частного двух функций. Нахождение предела сложной функции.
презентация [83,4 K], добавлен 21.09.2013Общее понятие числовой последовательности. Предел функции в точке. Бесконечно большая и малая функция. Связь между функцией, ее пределом и бесконечно малой функцией. Признаки существования пределов. Основные теоремы о пределах: краткая характеристика.
презентация [137,0 K], добавлен 25.01.2013Схема полного исследования бесконечно больших и малых функций и построение их графика. Арифметические теоремы о пределе функции. Применение формулы Тейлора, Маклорена, Коши, Лопиталя-Бернулли. Теорема о производной вектор-функции постоянной длины.
курс лекций [1,3 M], добавлен 14.12.2012