Дифференциальные уравнения
Основные понятия об обыкновенных дифференциальных уравнениях. Однородные дифференциальные уравнения 1-го порядка с разделяющимися переменными. Обобщенное однородное и линейные дифференциальные уравнения. Уравнение Бернулли и интегрирующий множитель.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 28.06.2014 |
Размер файла | 151,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Дифференциальные уравнения
1. Основные понятия об обыкновенных дифференциальных уравнениях
Определение 1. Обыкновенным дифференциальным уравнением n - го порядка для функции y аргумента x называется соотношение вида
(1.1),
где F - заданная функция своих аргументов. В названии этого класса математических уравнений термин «дифференциальное» подчеркивает, что в них входят производные (функции, образованные как результат дифференцирования); термин - «обыкновенное» говорит о том, что искомая функция зависит только от одного действительного аргумента.
Обыкновенное дифференциальное уравнение может не содержать в явном виде аргумент x, искомую функцию и любые ее производные, но старшая производная обязана входить в уравнение n-го порядка. Например
а) - уравнение первого порядка;
б) - уравнение третьего порядка.
При написании обыкновенных дифференциальных уравнений часто используются обозначения производных через дифференциалы:
в) - уравнение второго порядка;
г) - уравнение первого порядка,
образующее после деления на dx эквивалентную форму задания уравнения: .
Функция называется решением обыкновенного дифференциального уравнения, если при подстановке в него оно обращается в тождество.
Например, уравнение 3-го порядка
имеет решение .
Найти тем или иным приемом, например, подбором, одну функцию, удовлетворяющую уравнению, не означает решить его. Решить обыкновенное дифференциальное уравнение - значит найти все функции, образующие при подстановке в уравнение тождество. Для уравнения (1.1) семейство таких функций образуется с помощью произвольных постоянных и называется общим решением обыкновенного дифференциального уравнения n-го порядка, причем число констант совпадает с порядком уравнения: Общее решение может быть, и не разрешено явно относительно y(x): В этом случае решение принято называть общим интегралом уравнения (1.1).
Например, общим решением дифференциального уравнения является следующее выражение: , причем второе слагаемое может быть записано и как , так как произвольная постоянная , делённая на 2, может быть заменена новой произвольной постоянной .
Задавая некоторые допустимые значения всем произвольным постоянным в общем решении или в общем интеграле, получаем определенную функцию, уже не содержащую произвольных констант. Эта функция называется частным решением или частным интегралом уравнения (1.1). Для отыскания значений произвольных постоянных, а следовательно, и частного решения, используются различные дополнительные условия к уравнению (1.1). Например, могут быть заданы так называемые начальные условия при
(1.2)
В правых частях начальных условий (1.2) заданы числовые значения функции и производных, причем, общее число начальных условий равно числу определяемых произвольных констант.
Задача отыскания частного решения уравнения (1.1) по начальным условиям называется задачей Коши.
2. Обыкновенные дифференциальные уравнения 1-го порядка - основные понятия
Обыкновенное дифференциальное уравнение 1-го порядка (n=1) имеет вид: или, если его удается разрешить относительно производной: . Общее решение y=y(x,С) или общий интеграл уравнения 1-го порядка содержат одну произвольную постоянную. Единственное начальное условие для уравнения 1-го порядка позволяет определить значение константы из общего решения или из общего интеграла. Таким образом, будет найдено частное решение или, что тоже, будет решена задача Коши. Вопрос о существовании и единственности решения задачи Коши является одним из центральных в общей теории обыкновенных дифференциальных уравнений. Для уравнения 1-го порядка, в частности, справедлива теорема, принимаемая здесь без доказательства.
Если в уравнении функция и ее частная производная непрерывны в некоторой области D плоскости XOY, и в этой области задана точка , то существует и притом единственное решение , удовлетворяющее как уравнению , так и начальному условию .
Геометрически общее решение уравнения 1-го порядка представляет собой семейство кривых на плоскости XOY, не имеющих общих точек и отличающихся друг от друга одним параметром - значением константы C. Эти кривые называются интегральными кривыми для данного уравнения. Интегральные кривые уравнения обладают очевидным геометрическим свойством: в каждой точке тангенс угла наклона касательной к кривой равен значению правой части уравнения в этой точке: . Другими словами, уравнение задается в плоскости XOY поле направлений касательных к интегральным кривым. Замечание: Необходимо отметить, что к уравнению приводится уравнение и так называемое уравнение в симметрической форме.
3. Дифференциальные уравнения 1-го порядка с разделяющимися переменными
дифференциальный уравнение множитель бернулли
Определение. Дифференциальным уравнением с разделяющимися переменными называется уравнение вида (3.1)
или уравнение вида (3.2)
Для того, чтобы в уравнении (3.1) разделить переменные, т.е. привести это уравнение к так называемому уравнению с разделенными переменными, произвести следующие действия:
;
Теперь надо решить уравнение g(y)= 0. Если оно имеет вещественное решение y=a, то y=a тоже будет решением уравнения (3.1).
Уравнение (3.2) приводится к уравнению с разделенными переменными делением на произведение :
,
что позволяет получить общий интеграл уравнения (3.2):
. (3.3)
Интегральные кривые (3.3) будут дополнены решениями , если такие решения существуют.
Пример.
Решить уравнение: .
Решение.
Разделяем переменные:
.
Интегрируя, получаем
Далее из уравнений и находим x=1, y=-1. Эти решения - частные решения.
4. Однородные дифференциальные уравнения 1-го порядка
Определение 1. Уравнение 1-го порядка называется однородным, если для его правой части при любых справедливо соотношение , называемое условием однородности функции двух переменных нулевого измерения.
Пример 1. Показать, что функция - однородная нулевого измерения.
Решение.
,
что и требовалось доказать.
Теорема. Любая функция - однородна и, наоборот, любая однородная функция нулевого измерения приводится к виду .
Доказательство.
Первое утверждение теоремы очевидно, т.к. . Докажем второе утверждение. Положим , тогда для однородной функции , что и требовалось доказать.
Определение 2. Уравнение (4.1)
в котором M и N - однородные функции одной и той же степени, т.е. обладают свойством при всех , называется однородным.
Очевидно, что это уравнение всегда может быть приведено к виду (4.2), хотя для его решения можно этого и не делать.
Однородное уравнение приводится к уравнению с разделяющимися переменными с помощью замены искомой функции y по формуле y=zx, где z(x) - новая искомая функция. Выполнив эту подстановку в уравнении (4.2), получим: или или .
Интегрируя, получаем общий интеграл уравнения относительно функции z(x) , который после повторной замены дает общий интеграл исходного уравнения. Кроме того, если - корни уравнения , то функции - решения однородного заданного уравнения. Если же , то уравнение (4.2) принимает вид
и становится уравнением с разделяющимися переменными. Его решениями являются полупрямые: .
Замечание. Иногда целесообразно вместо указанной выше подстановки использовать подстановку x=zy.
5. Дифференциальные уравнения, приводящиеся к однородным
Рассмотрим уравнение вида
. (5.1)
Если , то это уравнение с помощью подстановки , где и - новые переменные, а и - некоторые постоянные числа, определяемые из системы
Приводится к однородному уравнению
Если , то уравнение (5.1) принимает вид
.
Полагая z=ax+by, приходим к уравнению, не содержащему независимой переменной.
Рассмотрим примеры.
Пример 1.
Проинтегрировать уравнение
и выделить интегральную кривую, проходящую через точки: а) (2;2); б) (1;-1).
Решение.
Положим y=zx. Тогда dy=xdz+zdx и
.
Сократим на и соберем члены при dx и dz:
.
Разделим переменные: .
Интегрируя, получим ;
или , .
Заменив здесь z на , получим общий интеграл заданного уравнения в виде (5.2) или .
Это семейство окружностей , центры которых лежат на прямой y = x и которые в начале координат касаются прямой y + x = 0. Эта прямая y = -x в свою очередь частное решение уравнения.
Теперь режим задачи Коши:
А) полагая в общем интеграле x=2, y=2, находим С=2, поэтому искомым решением будет .
Б) ни одна из окружностей (5.2) не проходит через точку (1;-1). Зато полупрямая y = -x, проходит через точку и дает искомое решение.
Пример 2. Решить уравнение: .
Решение.
Уравнение является частным случаем уравнения (5.1).
Определитель в данном примере , поэтому надо решить следующую систему
Решая, получим, что . Выполняя в заданном уравнении подстановку , получаем однородное уравнение . Интегрируя его при помощи подстановки , находим .
Возвращаясь к старым переменным x и y по формулам , имеем .
6. Обобщенное однородное уравнение
Уравнение M(x,y)dx+N(x,y)dy=0 называется обобщенным однородным, если удается подобрать такое число k, что левая часть этого уравнения становится однородной функцией некоторой степени m относительно x, y, dx и dy при условии, что x считается величиной первого измерения, y - k_го измерения, dx и dy - соответственно нулевого и (k-1)-го измерений. Например, таким будет уравнение
. (6.1)
Действительно при сделанном предположении относительно измерений
x, y, dx и dy члены левой части и dy будут иметь соответственно измерения -2, 2k и k-1. Приравнивая их, получаем условие, которому должно удовлетворять искомое число k: -2 = 2k = k-1. Это условие выполняется при k = -1 (при таком k все члены левой части рассматриваемого уравнения будут иметь измерение -2). Следовательно, уравнение (6.1) является обобщенным однородным.
Обобщенное однородное уравнение приводится к уравнению с разделяющимися переменными с помощью подстановки , где z - новая неизвестная функция. Проинтегрируем указанным методом уравнение (6.1). Так как k = -1, то , после чего получаем уравнение .
Интегрируя его, находим , откуда . Это общее решение уравнения (6.1).
7. Линейные дифференциальные уравнения 1-го порядка
Линейным уравнением 1-го порядка называется уравнение, линейное относительно искомой функции и ее производной. Оно имеет вид:
, (7.1)
где P(x) и Q(x) - заданные непрерывные функции от x. Если функция , то уравнение (7.1) имеет вид:
(7.2)
и называется линейным однородным уравнением, в противном случае оно называется линейным неоднородным уравнением.
Линейное однородное дифференциальное уравнение (7.2) является уравнением с разделяющимися переменными:
(7.3)
Выражение (7.3) есть общее решение уравнения (7.2). Чтобы найти общее решение уравнения (7.1), в котором функция P(x) обозначает ту же функцию, что и в уравнении (7.2), применим прием, называемый методом вариации произвольной постоянной и состоящий в следующем: постараемся подобрать функцию С=С(x) так, чтобы общее решение линейного однородного уравнения (7.2) являлось бы решением неоднородного линейного уравнения (7.1). Тогда для производной функции (7.3) получим:
.
Подставляя найденную производную в уравнение (7.1), будем иметь:
или .
Откуда , где - произвольная постоянная. В результате общее решение неоднородного линейного уравнения (7.1) будет
(7.4)
Первое слагаемое в этой формуле представляет общее решение (7.3) линейного однородного дифференциального уравнения (7.2), а второе слагаемое формулы (7.4) есть частное решение линейного неоднородного уравнения (7.1), полученное из общего (7.4) при . Этот важный вывод выделим в виде теоремы.
Теорема. Если известно одно частное решение линейного неоднородного дифференциального уравнения , то все остальные решения имеют вид , где - общее решение соответствующего линейного однородного дифференциального уравнения.
Однако надо отметить, что для решения линейного неоднородного дифференциального уравнения 1-го порядка (7.1) чаще применяется другой метод, иногда называемый методом Бернулли. Будем искать решение уравнения (7.1) в виде . Тогда . Подставим найденную производную в исходное уравнение: .
Объединим, например, второе и третье слагаемые последнего выражения и вынесем функцию u(x) за скобку:
(7.5)
Потребуем обращения в нуль круглой скобки: .
Решим это уравнение, полагая произвольную постоянную C равной нулю: . С найденной функцией v(x) вернемся в уравнение (7.5): .
Решая его, получим: .
Следовательно, общее решение уравнения (7.1) имеет вид:
.
8. Уравнение Бернулли
Определение.
Дифференциальное уравнение вида , где , называется уравнением Бернулли.
Предполагая, что , разделим обе части уравнения Бернулли на . В результате получим:
(8.1)
Введем новую функцию . Тогда . Домножим уравнение (8.1) на и перейдем в нем к функции z(x): , т.е. для функции z(x) получили линейное неоднородное уравнение 1-го порядка. Это уравнение решается методами, разобранными в предыдущем параграфе. Подставим в его общее решение вместо z(x) выражение , получим общий интеграл уравнения Бернулли, который легко разрешается относительно y. При добавляется решение y(x)=0. Уравнение Бернулли можно также решать, не делая перехода к линейному уравнению путем подстановки , а применяя метод Бернулли, подробно разобранный в § 7. Рассмотрим применение этого способа для решения уравнения Бернулли на конкретном примере.
Пример. Найти общее решение уравнения:
(8.2)
Решение.
Уравнение (8.2) является уравнением Бернулли, причем .
Будем искать решение уравнения в виде .
Тогда .
В левой части последнего уравнения сгруппируем второе и третье слагаемые, которые содержат функцию u(x), и потребуем, чтобы . Откуда . Тогда для функции u(x) будем иметь следующее уравнение:
или ,
которое является уравнением с разделяющимися переменными для функции u(x). Решим его , ,
Следовательно, общее решение данного уравнения имеет вид: , y(x)=0.
9. Дифференциальные уравнения в полных дифференциалах
Определение. Если в уравнении M(x,y)dx+N(x,y)dy=0 (9.1) левая часть есть полный дифференциал некоторой функции U(x,y), то оно называется уравнением в полных дифференциалах. Это уравнение можно переписать в виде du(x,y)=0, следовательно, его общий интеграл есть u(x,y)=c.
Например, уравнение xdy+ydx=0 есть уравнение в полных дифференциалах, так как его можно переписать в виде d(xy)=0. Общим интегралом будет xy=c.
Теорема. Предположим, что функции M и N определены и непрерывны в некоторой односвязной области D и имеют в ней непрерывные частные производные соответственно по y и по x. Тогда, для того, чтобы уравнение (9.1) было уравнением в полных дифференциалах, необходимо и достаточно, чтобы выполнялось тождество (9.2).
Доказательство.
Доказательство необходимости этого условия очевидно. Поэтому докажем достаточность условия (9.2). Покажем, что может быть найдена такая функция u(x,y), что
и .
Действительно, поскольку ,то
(9.3),
где - произвольная дифференцируемая функция. Продифференцируем (9.3) по y:
. Но , следовательно, .
Положим и тогда .
Итак, построена функция , для которой , а .
Рассмотрим пример.
Пример. Найти общий интеграл уравнения: .
Решение. Здесь
Тогда . Следовательно, заданное дифференциальное уравнение 1-го порядка является уравнением в полных дифференциалах, т.е. существует такая функция u(x,y), частные производные которой соответственно по x и y равны M(x,y) и N(x,y):
. Интегрируем первое из двух соотношений по x:
, .
Теперь продифференцируем u(x,y) по y и приравняем полученное в результате выражение выписанной выше частной производной :
.
Откуда и . Следовательно, общим интегралом заданного уравнения является: .
10. Интегрирующий множитель
Если уравнение M(x,y)dx + N(x,y)dy = 0 не является уравнением в полных дифференциалах и существует функция µ = µ(x,y), такая что после умножения на нее обеих частей уравнения получается уравнение
µ(Mdx + Ndy) = 0 в полных дифференциалах, т. е. µ(Mdx + Ndy)du, то функция µ(x,y) называется интегрирующим множителем уравнения. В случае, когда уравнение уже есть уравнение в полных дифференциалах, полагают µ = 1.
Если найден интегрирующий множитель µ, то интегрирование данного уравнения сводится к умножению обеих его частей на µ и нахождению общего интеграла полученного уравнения в полных дифференциалах.
Если µ есть непрерывно дифференцируемая функция от x и y, то
.
Отсюда следует, что интегрирующий множитель µ удовлетворяет следующему уравнению с частными производными 1-го порядка:
(10.1).
Если заранее известно, что µ= µ(щ), где щ - заданная функция от x и y, то уравнение (10.1) сводится к обыкновенному (и притом линейному) уравнению с неизвестной функцией µ от независимой переменной щ:
(10.2),
где , т. е. дробь является функцией только от щ.
Решая уравнение (10.2), находим интегрирующий множитель
, с = 1.
В частности уравнение M(x,y)dx + N(x,y)dy = 0 имеет интегрирующий множитель, зависящий только от x (щ = x) или только от y (щ = y), если выполнены соответственно следующие условия:
,
или
, .
Размещено на Allbest.ru
Подобные документы
Задачи Коши для дифференциальных уравнений. График решения дифференциального уравнения I порядка. Уравнения с разделяющимися переменными и приводящиеся к однородному. Однородные и неоднородные линейные уравнения первого порядка. Уравнение Бернулли.
лекция [520,6 K], добавлен 18.08.2012Уравнение с разделяющимися переменными. Однородные и линейные дифференциальные уравнения. Геометрические свойства интегральных кривых. Полный дифференциал функции двух переменных. Определение интеграла методами Бернулли и вариации произвольной постоянной.
реферат [111,0 K], добавлен 24.08.2015Линейные однородные дифференциальные уравнения второго порядка, общий вид. Линейная зависимость векторов и функций. Определитель Вронского, практические примеры его нахождения. Неоднородные уравнения второго порядка, теорема и доказательство, решение.
презентация [272,9 K], добавлен 17.09.2013Дифференциальные уравнения Риккати. Общее решение линейного уравнения. Нахождение всех возможных решений дифференциального уравнения Бернулли. Решение уравнений с разделяющимися переменными. Общее и особое решения дифференциального уравнения Клеро.
курсовая работа [347,1 K], добавлен 26.01.2015Уравнения с разделяющимися переменными, методы решения. Практический пример нахождения частного и общего решения. Понятие о неполных дифференциальных уравнениях. Линейные уравнения первого порядка. Метод вариации постоянной, разделения переменных.
презентация [185,0 K], добавлен 17.09.2013Установление прямой зависимости между величинами при изучении явлений природы. Свойства дифференциальных уравнений. Уравнения высших порядков, приводящиеся к квадратурам. Линейные однородные дифференциальные уравнения с постоянными коэффициентами.
курсовая работа [209,4 K], добавлен 04.01.2016Общий вид линейного однородного уравнения. Нахождение производных, вещественные и равные корни характеристического уравнения. Пример решения дифференциального уравнения с постоянными коэффициентами. Общее и частное решение неоднородного уравнения.
презентация [206,3 K], добавлен 17.09.2013Порядок и процедура поиска решения дифференциального уравнения. Теорема существования и единственности решения задачи Коши. Задачи, приводящие к дифференциальным уравнениям. Дифференциальные уравнения первого порядка, с разделяющими переменными.
лекция [744,1 K], добавлен 24.11.2010Дифференциальные уравнения при входном воздействии типа скачка для заданной электрической цепи. Применение преобразования Лапласа при нулевых начальных условиях. Решение уравнения операторным методом. Построение частотных характеристик цепи. Ее динамика.
курсовая работа [721,0 K], добавлен 27.05.2008Решение дифференциальных уравнений с разделяющимися переменными, однородных, линейных уравнений первого порядка и уравнений допускающего понижение порядка. Введение функций в решение уравнений. Интегрирование заданных линейных неоднородных уравнений.
контрольная работа [92,7 K], добавлен 09.02.2012