Свойства пределов. Интегрирование по частям
Определение предела последовательности, теорема о единственности предела. Классификация пределов, теорема о предельном переходе в неравенствах и теорема о двух милиционерах. Примеры интегрирования по частям, решение простых и неопределенных интегралов.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 19.05.2014 |
Размер файла | 213,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Свойства пределов
Определение. Число называется пределом последовательности , если для любого положительного числа найдется член последовательности такой, что все члены последовательности , следующие за ним, отстоят от меньше, чем на .
Определение. Число называется пределом последовательности , если в любом открытом промежутке, содержащем число , содержатся все члены последовательности , начиная с некоторого.
Теорема (о единственности предела). Если -- предел последовательности и -- предел последовательности , то .
Доказательство. Предположим, что . Возьмем . Найдется такой номер , что
также существует
Возьмем , которое больше и . Тогда
Обозначение. есть предел :
,
-- стремится (сходится) к ,
Определение. Последовательность, имеющая предел, называется сходящейся. предел последовательность интегрирование теорема
Определение. Последовательность называется строго возрастающей (возрастающей) [строго убывающей] убывающей, если каждый ее член, начиная со второго, больше (не меньше) [меньше] не больше предыдущего члена.
Последовательности (строго) возрастающая и (строго) убывающая называются (строго)монотонными.
Определение. Последовательность называется ограниченной, если существует .
Теорема. Всякая сходящаяся последовательность ограничена.
Доказательство. Пусть -- предел последовательности . Тогда найдется такой номер , что
Тогда .
Замечание. Тем самым, мы доказали ограниченность последовательности , поскольку, выбрав , получим .
Определение. Говорят, что последовательность отделена от нуля, если найдется такое положительное число , что все члены этой последовательности по модулю больше .
Теорема (о предельном переходе в неравенствах). Пусть и -- последовательности, причем . Пусть , . Тогда .
Доказательство. Предположим, что утверждение теоремы неверно, т.е. . Рассмотрим промежутки
Возьмем . Тогда
Получили противоречие, т.к.
Замечание. Если в условии теоремы заменить неравенство на , то все равно можно утверждать лишь то, что . Действительно,
Теорема (принцип сжатой последовательности, теорема о двух милиционерах). Пусть даны последовательности и существует : . Известно, что . Тогда .
Доказательство. Возьмем произвольный промежуток .
Обозначим . Тогда
Значит, .
Замечание. Принцип сжатой последовательности является теоремой существования и не следует из теоремы о предельном переходе в неравенствах.
Определение. Говорят, что , если
Последовательность при этом называется бесконечно большой;
, если
, если
Определение. Последовательность называется бесконечно малой, если .
Интегрирование по частям
Пример 1
Найти неопределенный интеграл.
Классика. Время от времени данный интеграл можно встретить в таблицах, но пользоваться готовым ответом нежелательно, так как у преподавателя весенний авитаминоз и он сильно заругается. Потому что рассматриваемый интеграл отнюдь не табличный - он берётся по частям. Решаем:
Прерываем решение на промежуточные объяснения.
Используем формулу интегрирования по частям:
Формула применяется слева направо
Смотрим на левую часть: . Очевидно, что в нашем примере (и во всех остальных, которые мы рассмотрим) что-то нужно обозначить за а что-то за .
В интегралах рассматриваемого типа за всегда обозначается логарифм.
Технически оформление решения реализуется следующим образом, в столбик записываем:
То есть, за мы обозначили логарифм, а за - оставшуюся часть подынтегрального выражения.
Следующий этап: находим дифференциал :
Дифференциал - это почти то же самое, что и производная, как его находить, мы уже разбирали на предыдущих уроках.
Теперь находим функцию . Для того чтобы найти функцию необходимо проинтегрировать правую часть нижнего равенства :
Теперь открываем наше решение и конструируем правую часть формулы: .
Вот кстати, и образец чистового решения с небольшими пометками:
Единственный момент, в произведении я сразу переставил местами и , так как множитель принято записывать перед логарифмом.
Как видите, применение формулы интегрирования по частям, по сути дела, свело наше решение к двум простым интегралам.
Обратите внимание, что в ряде случаев сразу после применения формулы, под оставшимся интегралом обязательно проводится упрощение - в рассматриваемом примере мы сократили подынтегральное выражение на «икс».
Выполним проверку. Для этого нужно взять производную от ответа:
Получена исходная подынтегральная функция, значит, интеграл решён правильно.
В ходе проверки мы использовали правило дифференцирования произведения: . И это не случайно.
Формула интегрирования по частям и формула - это два взаимно обратных правила.
Пример 2
Найти неопределенный интеграл.
Подынтегральная функция представляет собой произведение логарифма на многочлен.
Решаем.
Я еще один раз подробно распишу порядок применения правила, в дальнейшем примеры будут оформляться более кратко, и, если у Вас возникнут трудности в самостоятельном решении, нужно вернуться обратно к первым двум примерам урока.
Как уже говорилось, за необходимо обозначить логарифм (то, что он в степени - значения не имеет). За обозначаем оставшуюся часть подынтегрального выражения.
Записываем в столбик:
Сначала находим дифференциал :
Здесь использовано правило дифференцирования сложной функции . Не случайно, на самом первом уроке темы Неопределенный интеграл. Примеры решений я акцентировал внимание на том, что для того, чтобы освоить интегралы, необходимо «набить руку» на производных. С производными придется столкнуться еще не раз.
Теперь находим функцию , для этого интегрируем правую часть нижнего равенства :
Для интегрирования мы применили простейшую табличную формулу
Теперь всё готово для применения формулы . Открываем «звёздочкой» и «конструируем» решение в соответствии с правой частью :
Под интегралом у нас снова многочлен на логарифм! Поэтому решение опять прерывается и правило интегрирования по частям применяется второй раз. Не забываем, что за в похожих ситуациях всегда обозначается логарифм.
Хорошо бы, если к данному моменту простейшие интегралы и производные Вы умели находить устно.
(1) Не путаемся в знаках! Очень часто здесь теряют минус, также обратите внимание, что минус относится ко всей скобке , и эти скобки нужно корректно раскрыть.
(2) Раскрываем скобки. Последний интеграл упрощаем.
(3) Берем последний интеграл.
(4) «Причесываем» ответ.
Размещено на Allbest.ru
Подобные документы
Определение и этапы доказательства теоремы Штольца, ее теоретическое и практическое значение в прикладной математике, применение. Понятие предела последовательности, характерные примеры вычисления пределов последовательности с подробным разбором решения.
курсовая работа [103,0 K], добавлен 28.02.2010История развития теории пределов. Сущность и виды числовой последовательности, методика вычисления и определение свойств ее предела. Доказательство теоремы Штольца. Практическое применение предела последовательности в экономике, геометрии и физике.
курсовая работа [407,2 K], добавлен 16.12.2013Определение предела функции в точке. Понятие односторонних пределов. Геометрический смысл предела функции при х, стремящемся в бесконечности. Основные теоремы о пределах. Вычисление пределов и раскрытие неопределенностей. Первый замечательный предел.
презентация [292,4 K], добавлен 14.11.2014Методы интегрирования в древности. Понятие первообразной функции. Основная теорема интегрального исчисления. Свойства неопределенных и определенных интегралов и методы их вычисления, произвольные постоянные. Таблица интегралов элементарных функций.
презентация [525,7 K], добавлен 11.09.2011Непосредственное (элементарное) интегрирование, вычисление интегралов с помощью основных свойств неопределенного интеграла и таблицы интегралов. Метод замены переменной (метод подстановки). Интегрирование по частям, определение точности интегралов.
презентация [117,8 K], добавлен 18.09.2013Общий вид интеграла с переменным верхним пределом, его основные свойства. Теорема о среднем, её следствие. Функция, причины ее непрерывности, доказательство, её наименьшее и наибольшее значение. Связь между неопределенным и определенным интегралом.
презентация [191,7 K], добавлен 18.09.2013Расчет неопределенных интегралов по частям и по формуле Ньютона-Лейбница. Вычисление несобственного интеграла или доказательство его расходимости. Расчет площади фигуры, ограниченной кардиоидой. Расстановка пределов двумя альтернативными способами.
контрольная работа [251,2 K], добавлен 28.03.2014Формулировка и доказательство теоремы о простых числах в арифметической прогрессии (теорема Дирихле). Определение и основные свойства характеров. Суммы характеров и соотношение ортогональности. Характеры, L-функция Дирихле. Доказательство основных лемм.
курсовая работа [214,2 K], добавлен 12.08.2009Элементарная теория сравнений. Диофантовы приближения. Определения и свойства сравнений. Теорема Эйлера, теорема Ферма. Китайская теорема об остатках, ее обобщение Цинь Цзюшао. Применение к решению олимпиадных задач. Применение к открытию сейфа в банке.
курсовая работа [243,5 K], добавлен 29.09.2015Вычисление пределов и устранение неопределенности. Поиск производных функций. Вычисление приближенного значения 8.051/3. Определение полного дифференциала функции z=3sin(2x+3y). Формула интегрирования по частям. Решение линейного однородного уравнения.
контрольная работа [439,6 K], добавлен 25.03.2014