Свойства пределов. Интегрирование по частям

Определение предела последовательности, теорема о единственности предела. Классификация пределов, теорема о предельном переходе в неравенствах и теорема о двух милиционерах. Примеры интегрирования по частям, решение простых и неопределенных интегралов.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 19.05.2014
Размер файла 213,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Свойства пределов

Определение. Число называется пределом последовательности , если для любого положительного числа найдется член последовательности такой, что все члены последовательности , следующие за ним, отстоят от меньше, чем на .

Определение. Число называется пределом последовательности , если в любом открытом промежутке, содержащем число , содержатся все члены последовательности , начиная с некоторого.

Теорема (о единственности предела). Если -- предел последовательности и -- предел последовательности , то .

Доказательство. Предположим, что . Возьмем . Найдется такой номер , что

также существует

Возьмем , которое больше и . Тогда

Обозначение. есть предел :

,

-- стремится (сходится) к ,

Определение. Последовательность, имеющая предел, называется сходящейся. предел последовательность интегрирование теорема

Определение. Последовательность называется строго возрастающей (возрастающей) [строго убывающей] убывающей, если каждый ее член, начиная со второго, больше (не меньше) [меньше] не больше предыдущего члена.

Последовательности (строго) возрастающая и (строго) убывающая называются (строго)монотонными.

Определение. Последовательность называется ограниченной, если существует .

Теорема. Всякая сходящаяся последовательность ограничена.

Доказательство. Пусть -- предел последовательности . Тогда найдется такой номер , что

Тогда .

Замечание. Тем самым, мы доказали ограниченность последовательности , поскольку, выбрав , получим .

Определение. Говорят, что последовательность отделена от нуля, если найдется такое положительное число , что все члены этой последовательности по модулю больше .

Теорема (о предельном переходе в неравенствах). Пусть и -- последовательности, причем . Пусть , . Тогда .

Доказательство. Предположим, что утверждение теоремы неверно, т.е. . Рассмотрим промежутки

Возьмем . Тогда

Получили противоречие, т.к.

Замечание. Если в условии теоремы заменить неравенство на , то все равно можно утверждать лишь то, что . Действительно,

Теорема (принцип сжатой последовательности, теорема о двух милиционерах). Пусть даны последовательности и существует : . Известно, что . Тогда .

Доказательство. Возьмем произвольный промежуток .

Обозначим . Тогда

Значит, .

Замечание. Принцип сжатой последовательности является теоремой существования и не следует из теоремы о предельном переходе в неравенствах.

Определение. Говорят, что , если

Последовательность при этом называется бесконечно большой;

, если

, если

Определение. Последовательность называется бесконечно малой, если .

Интегрирование по частям

Пример 1

Найти неопределенный интеграл.

Классика. Время от времени данный интеграл можно встретить в таблицах, но пользоваться готовым ответом нежелательно, так как у преподавателя весенний авитаминоз и он сильно заругается. Потому что рассматриваемый интеграл отнюдь не табличный - он берётся по частям. Решаем:

Прерываем решение на промежуточные объяснения.

Используем формулу интегрирования по частям:

Формула применяется слева направо

Смотрим на левую часть: . Очевидно, что в нашем примере (и во всех остальных, которые мы рассмотрим) что-то нужно обозначить за а что-то за .

В интегралах рассматриваемого типа за всегда обозначается логарифм.

Технически оформление решения реализуется следующим образом, в столбик записываем:

То есть, за мы обозначили логарифм, а за - оставшуюся часть подынтегрального выражения.

Следующий этап: находим дифференциал :

Дифференциал - это почти то же самое, что и производная, как его находить, мы уже разбирали на предыдущих уроках.

Теперь находим функцию . Для того чтобы найти функцию необходимо проинтегрировать правую часть нижнего равенства :

Теперь открываем наше решение и конструируем правую часть формулы: .

Вот кстати, и образец чистового решения с небольшими пометками:

Единственный момент, в произведении я сразу переставил местами и , так как множитель принято записывать перед логарифмом.

Как видите, применение формулы интегрирования по частям, по сути дела, свело наше решение к двум простым интегралам.

Обратите внимание, что в ряде случаев сразу после применения формулы, под оставшимся интегралом обязательно проводится упрощение - в рассматриваемом примере мы сократили подынтегральное выражение на «икс».

Выполним проверку. Для этого нужно взять производную от ответа:

Получена исходная подынтегральная функция, значит, интеграл решён правильно.

В ходе проверки мы использовали правило дифференцирования произведения: . И это не случайно.

Формула интегрирования по частям и формула - это два взаимно обратных правила.

Пример 2

Найти неопределенный интеграл.

Подынтегральная функция представляет собой произведение логарифма на многочлен.

Решаем.

Я еще один раз подробно распишу порядок применения правила, в дальнейшем примеры будут оформляться более кратко, и, если у Вас возникнут трудности в самостоятельном решении, нужно вернуться обратно к первым двум примерам урока.

Как уже говорилось, за необходимо обозначить логарифм (то, что он в степени - значения не имеет). За обозначаем оставшуюся часть подынтегрального выражения.

Записываем в столбик:

Сначала находим дифференциал :

Здесь использовано правило дифференцирования сложной функции . Не случайно, на самом первом уроке темы Неопределенный интеграл. Примеры решений я акцентировал внимание на том, что для того, чтобы освоить интегралы, необходимо «набить руку» на производных. С производными придется столкнуться еще не раз.

Теперь находим функцию , для этого интегрируем правую часть нижнего равенства :

Для интегрирования мы применили простейшую табличную формулу

Теперь всё готово для применения формулы . Открываем «звёздочкой» и «конструируем» решение в соответствии с правой частью :

Под интегралом у нас снова многочлен на логарифм! Поэтому решение опять прерывается и правило интегрирования по частям применяется второй раз. Не забываем, что за в похожих ситуациях всегда обозначается логарифм.

Хорошо бы, если к данному моменту простейшие интегралы и производные Вы умели находить устно.

(1) Не путаемся в знаках! Очень часто здесь теряют минус, также обратите внимание, что минус относится ко всей скобке , и эти скобки нужно корректно раскрыть.

(2) Раскрываем скобки. Последний интеграл упрощаем.

(3) Берем последний интеграл.

(4) «Причесываем» ответ.

Размещено на Allbest.ru


Подобные документы

  • Определение и этапы доказательства теоремы Штольца, ее теоретическое и практическое значение в прикладной математике, применение. Понятие предела последовательности, характерные примеры вычисления пределов последовательности с подробным разбором решения.

    курсовая работа [103,0 K], добавлен 28.02.2010

  • История развития теории пределов. Сущность и виды числовой последовательности, методика вычисления и определение свойств ее предела. Доказательство теоремы Штольца. Практическое применение предела последовательности в экономике, геометрии и физике.

    курсовая работа [407,2 K], добавлен 16.12.2013

  • Определение предела функции в точке. Понятие односторонних пределов. Геометрический смысл предела функции при х, стремящемся в бесконечности. Основные теоремы о пределах. Вычисление пределов и раскрытие неопределенностей. Первый замечательный предел.

    презентация [292,4 K], добавлен 14.11.2014

  • Методы интегрирования в древности. Понятие первообразной функции. Основная теорема интегрального исчисления. Свойства неопределенных и определенных интегралов и методы их вычисления, произвольные постоянные. Таблица интегралов элементарных функций.

    презентация [525,7 K], добавлен 11.09.2011

  • Непосредственное (элементарное) интегрирование, вычисление интегралов с помощью основных свойств неопределенного интеграла и таблицы интегралов. Метод замены переменной (метод подстановки). Интегрирование по частям, определение точности интегралов.

    презентация [117,8 K], добавлен 18.09.2013

  • Общий вид интеграла с переменным верхним пределом, его основные свойства. Теорема о среднем, её следствие. Функция, причины ее непрерывности, доказательство, её наименьшее и наибольшее значение. Связь между неопределенным и определенным интегралом.

    презентация [191,7 K], добавлен 18.09.2013

  • Расчет неопределенных интегралов по частям и по формуле Ньютона-Лейбница. Вычисление несобственного интеграла или доказательство его расходимости. Расчет площади фигуры, ограниченной кардиоидой. Расстановка пределов двумя альтернативными способами.

    контрольная работа [251,2 K], добавлен 28.03.2014

  • Формулировка и доказательство теоремы о простых числах в арифметической прогрессии (теорема Дирихле). Определение и основные свойства характеров. Суммы характеров и соотношение ортогональности. Характеры, L-функция Дирихле. Доказательство основных лемм.

    курсовая работа [214,2 K], добавлен 12.08.2009

  • Элементарная теория сравнений. Диофантовы приближения. Определения и свойства сравнений. Теорема Эйлера, теорема Ферма. Китайская теорема об остатках, ее обобщение Цинь Цзюшао. Применение к решению олимпиадных задач. Применение к открытию сейфа в банке.

    курсовая работа [243,5 K], добавлен 29.09.2015

  • Вычисление пределов и устранение неопределенности. Поиск производных функций. Вычисление приближенного значения 8.051/3. Определение полного дифференциала функции z=3sin(2x+3y). Формула интегрирования по частям. Решение линейного однородного уравнения.

    контрольная работа [439,6 K], добавлен 25.03.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.