Фракталы, их история и классификация

Фрактальная геометрия Бенуа Мандельброта. Наиболее известные геометрические и алгебраические фракталы. Применение фракталов в экономике, механике жидкостей и газов, физике поверхностей, нефтехимии, геологии, картографии. Особенности фрактальных картин.

Рубрика Математика
Вид презентация
Язык русский
Дата добавления 11.05.2014
Размер файла 2,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.


Подобные документы

  • Классические фракталы. Самоподобие. Снежинка Коха. Ковер Серпинского. L-системы. Хаотическая динамика. Аттрактор Лоренца. Множества Мандельброта и Жюлиа. Применение фракталов в компьютерных технологиях.

    курсовая работа [342,4 K], добавлен 26.05.2006

  • История появления теории фракталов. Фрактал – самоподобная структура, чье изображение не зависит от масштаба. Это рекурсивная модель, каждая часть которой повторяет в своем развитии развитие всей модели в целом. Практическое применение теории фракталов.

    научная работа [230,7 K], добавлен 12.05.2010

  • Геометрия на Востоке. Греческая геометрия. Геометрия новых веков. Классическая геометрия XIX века. Неевклидовая геометрия. Геометрия XX века. Современная геометрия во многих своих дисциплинах выходит далеко за пределы классической геометрии.

    реферат [32,3 K], добавлен 14.07.2004

  • Геометрия Евклида — теория, основанная на системе аксиом, изложенной в "Началах". Гиперболическая геометрия Лобачевского, ее применение в математике и физике. Реализация геометрии Римана на поверхностях с постоянной положительной гауссовской кривизной.

    презентация [685,4 K], добавлен 12.09.2013

  • Рассмотрение фрактальной размерности как одной из характеристик инженерной поверхности. Описание природных фракталов. Измерение длины негладкой (изломанной) линии. Подобие и скейлинг, самоподобие и самоаффинность. Соотношение "периметр-площадь".

    контрольная работа [1,9 M], добавлен 23.12.2015

  • История возникновения и понятия дифференциальной геометрии, в которой плоские и пространственные кривые и поверхности изучаются с помощью дифференциального исчисления и методами математического анализа. Применение темы "Теория поверхностей " в школе.

    реферат [608,8 K], добавлен 23.04.2015

  • Возникновение и развитие теории групп. Проблема интегрирования дифференциальных уравнений. Алгебраические конструкции в теории автоматов. Появление понятия перестановок. Группы и классификация голограмм. Применение теории групп в квантовой механике.

    реферат [457,3 K], добавлен 08.02.2013

  • Сущность и общая характеристика метода "барона Мюнхгаузена", его применение в алгебре. Нахождение значений выражений с бесконечным числом элементов, использование формулы куба суммы и разности. "Метод барона Мюнхгаузена": золотое сечение и фракталы.

    реферат [2,8 M], добавлен 18.01.2011

  • Использование геометрических форм и линий в практической деятельности человека. Геометрия у древних людей. Природные творения в виде геометрических фигур, их распространение в животном мире. Геометрические комбинации в архитектуре, сфере транспорта, быту.

    реферат [21,5 K], добавлен 06.09.2012

  • Биографии и описание деятельности великих математиков: Паскаля, Бернулли, Дезарга, Ньютона, Ферма, Декарта, Эйлера, Монжа, Фурье, Лагранжа, Виета, Лейбница. Алгебраические методы в геометрии. Аналитическая геометрия Ферма. Аналитическая геометрия Декарта.

    реферат [1,7 M], добавлен 14.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.