Рациональное возмущение линейных дифференциальных систем, не изменяющих отражающую функцию
Общие сведения об отражающей функции. Эквивалентность совпадения отражающих функций, вспомогательные утверждения и их доказательства. Решение задачи возмущения дифференциальных систем, не меняющего отражающей функции, справедливость теоремы.
Рубрика | Математика |
Предмет | Дифференциальные уравнения |
Вид | курсовая работа |
Язык | русский |
Прислал(а) | Борисенко И.А. |
Дата добавления | 13.04.2014 |
Размер файла | 221,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Построение дифференциальных систем, эквивалентных в смысле совпадения отражающих функций, системам с известным первым интегралом. Отображение Пуанкаре, общие сведения об отражающих функциях. Возмущения дифференциальных систем, стационарный интеграл.
дипломная работа [502,7 K], добавлен 21.08.2009Понятие и свойства отражающей функции. Первый интеграл дифференциальной системы и условия существования. Условия возмущения дифференциальных систем, не изменяющие временных симметрий. Определение связи между первым интегралом и эквивалентными системами.
курсовая работа [192,0 K], добавлен 21.08.2009Виды дифференциальных уравнений: обыкновенные, с частными производными, стохастические. Классификация линейных уравнений второго порядка. Нахождение функции Грина, ее применение для решения неоднородных дифференциальных уравнений с граничными условиями.
курсовая работа [4,8 M], добавлен 29.04.2013Вид уравнения Риккати при произвольном дробно-линейном преобразовании зависимой переменной. Свойства отражающей функции, ее построение для нелинейных дифференциальных уравнений первого порядка. Формулировка и доказательства леммы для ОФ уравнения Риккати.
курсовая работа [709,5 K], добавлен 22.11.2014Анализ методов решения систем дифференциальных уравнений, которыми можно описать поведение материальных точек в силовом поле, законы химической кинетики, уравнения электрических цепей. Этапы решения задачи Коши для системы дифференциальных уравнений.
курсовая работа [791,0 K], добавлен 12.06.2010Описание колебательных систем дифференциальными уравнениями с малым параметром при производных, асимптотическое поведение их решений. Методика регулярных возмущений и особенности ее применения при решении задачи Коши для дифференциальных уравнений.
курсовая работа [1,5 M], добавлен 15.06.2009Оригиналы и изображения функций по Лапласу. Основные теоремы операционного исчисления. Изображения простейших функций. Отыскание оригинала по изображению. Задача Коши для обыкновенных линейных дифференциальных уравнений с постоянными коэффициентами.
дипломная работа [162,3 K], добавлен 27.05.2008Понятия и решения простейших дифференциальных уравнений и дифференциальных уравнений произвольного порядка, в том числе с постоянными аналитическими коэффициентами. Системы линейных уравнений. Асимптотическое поведение решений некоторых линейных систем.
дипломная работа [395,4 K], добавлен 10.06.2010Решение системы линейных обыкновенных дифференциальных уравнений, описывающей боковое перемещение нестабильного самолета относительно заданного курса полета методом преобразования Лапласа. Стабилизация движения путем введения отрицательной обратной связи.
курсовая работа [335,8 K], добавлен 31.05.2016Обобщенные решения линейных дифференциальных уравнений. Основные примеры построения фундаментальных решений линейных дифференциальных операторов с постоянными коэффициентами, метод преобразования Фурье. Преимущества использования методов спуска.
курсовая работа [1,1 M], добавлен 10.04.2014