Решение линейных уравнений

Виды систем из p линейных алгебраических уравнений с n неизвестными переменными. Недостаток метода Крамера - трудоемкость вычисления определителей, когда число уравнений системы больше трех. Алгоритм исключения неизвестных переменных методом Гауса.

Рубрика Математика
Вид курсовая работа
Язык русский
Дата добавления 26.02.2014
Размер файла 839,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

1. Определения, понятия, обозначения

Будем рассматривать системы из p линейных алгебраических уравнений с n неизвестными переменными (p может быть равно n) вида

- неизвестные переменные,

- коэффициенты (некоторые действительные или комплексные числа),

- свободные члены (также действительные или комплексные числа).

Такую форму записи СЛАУ называют координатной.

В матричной форме записи эта система уравнений имеет вид:

,

где:

- основная матрица системы,

- матрица-столбец неизвестных переменных,

- матрица-столбец свободных членов.

Если к матрице А добавить в качестве (n+1)-ого столбца матрицу-столбец свободных членов, то получим так называемую расширенную матрицу системы линейных уравнений. Обычно расширенную матрицу обозначают буквой Т, а столбец свободных членов отделяют вертикальной линией от остальных столбцов, то есть,

Решением системы линейных алгебраических уравнений называют набор значений неизвестных переменных , обращающий все уравнения системы в тождества. Матричное уравнение:

при данных значениях неизвестных переменных также обращается в тождество:

.

Если система уравнений имеет хотя бы одно решение, то она называется совместной.

Если система уравнений решений не имеет, то она называется несовместной.

Если СЛАУ имеет единственное решение, то ее называют определенной; если решений больше одного, то - неопределенной.

Если свободные члены всех уравнений системы равны нулю , то система называется однородной, в противном случае - неоднородной.

Решение элементарных систем линейных алгебраических уравнений.

Если число уравнений системы равно числу неизвестных переменных и определитель ее основной матрицы не равен нулю, то такие СЛАУ будем называть элементарными. Такие системы уравнений имеют единственное решение, причем в случае однородной системы все неизвестные переменные равны нулю.

Такие СЛАУ мы начинали изучать в средней школе. При их решении мы брали какое-нибудь одно уравнение, выражали одну неизвестную переменную через другие и подставляли ее в оставшиеся уравнения, следом брали следующее уравнение, выражали следующую неизвестную переменную и подставляли в другие уравнения и так далее. Или пользовались методом сложения, то есть, складывали два или более уравнений, чтобы исключить некоторые неизвестные переменные. Не будем подробно останавливаться на этих методах, так как они, по сути, являются модификациями метода Гаусса.

Основными методами решения элементарных систем линейных уравнений являются метод Крамера, матричный метод и метод Гаусса. Разберем их.

2. Решение систем линейных уравнений методом Крамера

Пусть нам требуется решить систему линейных алгебраических уравнений:

в которой число уравнений равно числу неизвестных переменных и определитель основной матрицы системы отличен от нуля, то есть, .

Пусть - определитель основной матрицы системы, а - определители матриц, которые получаются из А заменой 1-ого, 2-ого, …, n-ого столбца соответственно на столбец свободных членов:

При таких обозначениях неизвестные переменные вычисляются по формулам метода Крамера как:

.

Так находится решение системы линейных алгебраических уравнений методом Крамера.

Пример.

Решите систему линейных уравнений методом Крамера

.

Решение.

Основная матрица системы имеет вид

.

Вычислим ее определитель (при необходимости смотрите статью определитель матрицы: определение, методы вычисления, примеры, решения):

Так как определитель основной матрицы системы отличен от нуля, то система имеет единственное решение, которое может быть найдено методом Крамера.

Составим и вычислим необходимые определители (определитель получаем, заменив в матрице А первый столбец на столбец свободных членов , определитель - заменив второй столбец на столбец свободных членов, - заменив третий столбец матрицы А на столбец свободных членов):

Находим неизвестные переменные по формулам:

:

Ответ:

x1 = 4, x2 = 0, x3 = -1.

Основным недостатком метода Крамера (если это можно назвать недостатком) является трудоемкость вычисления определителей, когда число уравнений системы больше трех.

3. Решение систем линейных алгебраических уравнений матричным методом (с помощью обратной матрицы)

Пусть система линейных алгебраических уравнений задана в матричной форме:

,

где матрица A имеет размерность n на n и ее определитель отличен от нуля.

Так как , то матрица А - обратима, то есть, существует обратная матрица . Если умножить обе части равенства:

на слева, то получим формулу для нахождения матрицы-столбца неизвестных переменных:

Так мы получили решение системы линейных алгебраических уравнений матричным методом.

Пример.

Решите систему линейных уравнений:

матричным методом.

Решение.

Перепишем систему уравнений в матричной форме:

Так как

то СЛАУ можно решать матричным методом. С помощью обратной матрицы решение этой системы может быть найдено как:

Построим обратную матрицу с помощью матрицы из алгебраических дополнений

элементов матрицы А (при необходимости смотрите:

Осталось вычислить:

- матрицу неизвестных переменных, умножив обратную матрицу

на матрицу-столбец свободных членов

(при необходимости смотрите статью операции над матрицами):

Ответ:

или в другой записи x1 = 4, x2 = 0, x3 = -1.

Основная проблема при нахождении решения систем линейных алгебраических уравнений матричным методом заключается в трудоемкости нахождения обратной матрицы, особенно для квадратных матриц порядка выше третьего.

4. Решение систем линейных уравнений методом Гаусса

Пусть нам требуется найти решение системы из n линейных уравнений с n неизвестными переменными:

определитель основной матрицы, которой отличен от нуля.

Суть метода Гаусса состоит в последовательном исключении неизвестных переменных: сначала исключается x1 из всех уравнений системы, начиная со второго, далее исключается x2из всех уравнений, начиная с третьего, и так далее, пока в последнем уравнении останется только неизвестная переменная xn. Такой процесс преобразования уравнений системы для последовательного исключения неизвестных переменных называется прямым ходом метода Гаусса. После завершения прямого хода метода Гаусса из последнего уравнения находится xn, с помощью этого значения из предпоследнего уравнения вычисляется xn-1, и так далее, из первого уравнения находится x1. Процесс вычисления неизвестных переменных при движении от последнего уравнения системы к первому называется обратным ходом метода Гаусса.

Кратко опишем алгоритм исключения неизвестных переменных.

Будем считать, что , так как мы всегда можем этого добиться перестановкой местами уравнений системы. Исключим неизвестную переменную x1 из всех уравнений системы, начиная со второго. Для этого ко второму уравнению системы прибавим первое, умноженное на , к третьему уравнению прибавим первое, умноженное на , и так далее, к n-ому уравнению прибавим первое, умноженное на . Система уравнений после таких преобразований примет вид:

где:

,

а:

.

К такому же результату мы бы пришли, если бы выразили x1 через другие неизвестные переменные в первом уравнении системы и полученное выражение подставили во все остальные уравнения. Таким образом, переменная x1 исключена из всех уравнений, начиная со второго.

Далее действуем аналогично, но лишь с частью полученной системы, которая отмечена на рисунке:

Будем считать, что (в противном случае мы переставим местами вторую строку с k-ой, где ). Приступаем к исключению неизвестной переменной x2 из всех уравнений, начиная с третьего.

Для этого к третьему уравнению системы прибавим второе, умноженное на , к четвертому уравнению прибавим второе, умноженное на , и так далее, к n-ому уравнению прибавим второе, умноженное на . Система уравнений после таких преобразований примет вид:

где:

,

а:

.

Таким образом, переменная x2 исключена из всех уравнений, начиная с третьего.

Далее приступаем к исключению неизвестной x3, при этом действуем аналогично с отмеченной на рисунке частью системы:

Так продолжаем прямой ход метода Гаусса пока система не примет вид:

С этого момента начинаем обратный ход метода Гаусса: вычисляем xn из последнего уравнения как:

,

с помощью полученного значения xn находим xn-1 из предпоследнего уравнения, и так далее, находим x1 из первого уравнения.

Пример.

Решите систему линейных уравнений:

методом Гаусса.

Решение.

Исключим неизвестную переменную x1 из второго и третьего уравнения системы. Для этого к обеим частям второго и третьего уравнений прибавим соответствующие части первого уравнения, умноженные на и на соответственно:

Теперь из третьего уравнения исключим x2, прибавив к его левой и правой частям левую и правую части второго уравнения, умноженные на:

На этом прямой ход метода Гаусса закончен, начинаем обратный ход.

Из последнего уравнения полученной системы уравнений находим x3:

Из второго уравнения получаем:

.

Из первого уравнения находим оставшуюся неизвестную переменную и этим завершаем обратный ход метода Гаусса:

.

Ответ:

x1 = 4, x2 = 0, x3 = -1.

5. Решение систем линейных алгебраических уравнений общего вида

В общем случае число уравнений системы p не совпадает с числом неизвестных переменных n:

Такие СЛАУ могут не иметь решений, иметь единственное решение или иметь бесконечно много решений. Это утверждение относится также к системам уравнений, основная матрица которых квадратная и вырожденная.

Далее нам потребуется понятие минора матрицы и ранга матрицы, которые даны в статье ранг матрицы: определение, методы нахождения, примеры, решения.

Теорема Кронекера-Капелли.

Прежде чем находить решение системы линейных уравнений необходимо установить ее совместность. Ответ на вопрос когда СЛАУ совместна, а когда несовместна, дает теорема Кронекера-Капелли: для того, чтобы система из p уравнений с n неизвестными (p может быть равно n) была совместна необходимо и достаточно, чтобы ранг основной матрицы системы был равен рангу расширенной матрицы, то есть,

Rank(A)=Rank(T).

Рассмотрим на примере применение теоремы Кронекера-Капелли для определения совместности системы линейных уравнений.

Пример.

Выясните, имеет ли система линейных уравнений решения:

Решение.

Найдем ранг основной матрицы системы

.

Воспользуемся методом окаймляющих миноров. Минор второго порядка

отличен от нуля. Переберем окаймляющие его миноры третьего порядка:

Так как все окаймляющие миноры третьего порядка равны нулю, то ранг основной матрицы равен двум.

В свою очередь ранг расширенной матрицы:

равен трем, так как минор третьего порядка

отличен от нуля.

Таким образом, Rang(A)<Rang(T), следовательно, по теореме Кронекера-Капелли можно сделать вывод, что исходная система линейных уравнений несовместна.

Ответ:

система решений не имеет.

Итак, мы научились устанавливать несовместность системы с помощью теоремы Кронекера-Капелли.

А как же находить решение СЛАУ, если установлена ее совместность?

Для этого нам потребуется понятие базисного минора матрицы и теорема о ранге матрицы.

Минор наивысшего порядка матрицы А, отличный от нуля, называется базисным.

Из определения базисного минора следует, что его порядок равен рангу матрицы. Для ненулевой матрицы А базисных миноров может быть несколько, один базисный минор есть всегда.

Для примера рассмотрим матрицу:

.

Все миноры третьего порядка этой матрицы равны нулю, так как элементы третьей строки этой матрицы представляют собой сумму соответствующих элементов первой и второй строк.

Базисными являются следующие миноры второго порядка, так как они отличны от нуля

Миноры

базисными не являются, так как равны нулю.

Теорема о ранге матрицы.

Если ранг матрицы порядка p на n равен r, то все элементы строк (и столбцов) матрицы, не образующие выбранный базисный минор, линейно выражаются через соответствующие элементы строк (и столбцов), образующих базисный минор.

Что нам дает теорема о ранге матрицы?

Если по теореме Кронекера-Капелли мы установили совместность системы, то выбираем любой базисный минор основной матрицы системы (его порядок равен r), и исключаем из системы все уравнения, которые не образуют выбранный базисный минор. Полученная таким образом СЛАУ будет эквивалентна исходной, так как отброшенные уравнения все равно излишни (они согласно теореме о ранге матрицы являются линейной комбинацией оставшихся уравнений).

В итоге, после отбрасывания излишних уравнений системы, возможны два случая.

1. Если число уравнений r в полученной системе будет равно числу неизвестных переменных, то она будет определенной и единственное решение можно будет найти методом Крамера, матричным методом или методом Гаусса.

Пример.

Решите систему линейных алгебраических уравнений:

.

Решение.

Ранг основной матрицы системы

равен двум, так как минор второго порядка

отличен от нуля.

Ранг расширенной матрицы:

также равен двум, так как единственный минор третьего порядка равен нулю

,

а рассмотренный выше минор второго порядка отличен от нуля. На основании теоремы Кронекера-Капелли можно утверждать совместность исходной системы линейных уравнений, так как Rank(A)=Rank(T)=2.

В качестве базисного минора возьмем

.

Его образуют коэффициенты первого и второго уравнений:

Третье уравнение системы не участвует в образовании базисного минора, поэтому исключим его из системы на основании теоремы о ранге матрицы:

Так мы получили элементарную систему линейных алгебраических уравнений. Решим ее методом Крамера:

Ответ:

x1 = 1, x2 = 2.

2. Если число уравнений r в полученной СЛАУ меньше числа неизвестных переменных n, то в левых частях уравнений оставляем слагаемые, образующие базисный минор, остальные слагаемые переносим в правые части уравнений системы с противоположным знаком.

Неизвестные переменные (их r штук), оставшиеся в левых частях уравнений, называются основными.

Неизвестные переменные (их n - r штук), которые оказались в правых частях, называются свободными.

Теперь считаем, что свободные неизвестные переменные могут принимать произвольные значения, при этом r основных неизвестных переменных будут выражаться через свободные неизвестные переменные единственным образом. Их выражение можно найти, решая полученную СЛАУ методом Крамера, матричным методом или методом Гаусса.

Разберем на примере.

Пример.

Решите систему линейных алгебраических уравнений:

.

Решение.

Найдем ранг основной матрицы системы

методом окаймляющих миноров. В качестве ненулевого минора первого порядка возьмем a1 1 = 1. Начнем поиск ненулевого минора второго порядка, окаймляющего данный минор:

Так мы нашли ненулевой минор второго порядка. Начнем поиск ненулевого окаймляющего минора третьего порядка:

Таким образом, ранг основной матрицы равен трем. Ранг расширенной матрицы также равен трем, то есть, система совместна.

Найденный ненулевой минор третьего порядка возьмем в качестве базисного.

Для наглядности покажем элементы, образующие базисный минор:

Оставляем в левой части уравнений системы слагаемые, участвующие в базисном миноре, остальные переносим с противоположными знаками в правые части:

Придадим свободным неизвестным переменным x2 и x5 произвольные значения, то есть, примем , где - произвольные числа. При этом СЛАУ примет вид:

Полученную элементарную систему линейных алгебраических уравнений решим методом Крамера:

Следовательно,

.

В ответе не забываем указать свободные неизвестные переменные.

Ответ:

,

где - произвольные числа.

Подведем итог.

Чтобы решить систему линейных алгебраических уравнений общего вида, сначала выясняем ее совместность, используя теорему Кронекера-Капелли. Если ранг основной матрицы не равен рангу расширенной матрицы, то делаем вывод о несовместности системы.

Если ранг основной матрицы равен рангу расширенной матрицы, то выбираем базисный минор и отбрасываем уравнения системы, которые не участвуют в образовании выбранного базисного минора.

Если порядок базисного минора равен числу неизвестных переменных, то СЛАУ имеет единственное решение, которое находим любым известным нам методом.

Если порядок базисного минора меньше числа неизвестных переменных, то в левой части уравнений системы оставляем слагаемые с основными неизвестными переменными, остальные слагаемые переносим в правые части и придаем свободным неизвестным переменным произвольные значения. Из полученной системы линейных уравнений находим основные неизвестные переменные методом Крамера, матричным методом или методом Гаусса.

6. Метод Гаусса для решения систем линейных алгебраических уравнений общего вида

Методом Гаусса можно решать системы линейных алгебраических уравнений любого вида без предварительного их исследования на совместность. Процесс последовательного исключения неизвестных переменных позволяет сделать вывод, как о совместности, так и о несовместности СЛАУ, а в случае существования решения дает возможность отыскать его.

С точки зрения вычислительной работы метод Гаусса является предпочтительным.

алгебраический крамер гаус уравнение

Литература

1. В.С. Шипачев "Начала высшей математики" Пособие для вузов. - М.: Дрофа, 2002. - 384с.

2. И.Л. Зайцев "Элементы высшей математики" для техникумов - М.: Наука, 1972. - 416с.

3. В.Т. Лисичкин, И.Л. Соловейчик "Математика" Учебное пособие для техникумов. - М.: Высш. шк., 1991. - 480с.

4. Д.Т. Письменный. Конспект лекций по высшей математике. I часть. - М.: Айрис-пресс, 2005. - 288с.

5. Математика для техникумов (под ред. Г.Н. Яковлева). - М.: Наука, 1987. - 464с.

Размещено на Allbest.ru


Подобные документы

  • Основные понятия теории систем уравнений. Метод Гаусса — метод последовательного исключения переменных. Формулы Крамера. Решение систем линейных уравнений методом обратной матрицы. Теорема Кронекер–Капелли. Совместность систем однородных уравнений.

    лекция [24,2 K], добавлен 14.12.2010

  • Сущность и содержание метода Крамера как способа решения квадратных систем линейных алгебраических уравнений с ненулевым определителем основной матрицы. Содержание основных правил Крамера, сферы и особенности их практического применения в математике.

    презентация [987,7 K], добавлен 22.11.2014

  • Теория определителей в трудах П. Лапласа, О. Коши и К. Якоби. Определители второго порядка и системы двух линейных уравнений с двумя неизвестными. Определители третьего порядка и свойства определителей. Решение системы уравнений по правилу Крамера.

    презентация [642,7 K], добавлен 31.10.2016

  • Понятие и специфические черты системы линейных алгебраических уравнений. Механизм и этапы решения системы линейных алгебраических уравнений. Сущность метода исключения Гаусса, примеры решения СЛАУ данным методом. Преимущества и недостатки метода Гаусса.

    контрольная работа [397,2 K], добавлен 13.12.2010

  • Способы решения системы уравнений с двумя переменными. Прямая как график линейного уравнения. Использование способов подстановки и сложения при решении систем линейных уравнений с двумя переменными. Решение системы линейных уравнений методом Гаусса.

    реферат [532,7 K], добавлен 10.11.2009

  • Понятие и сущность определителей второго порядка. Рассмотрение основ системы из двух линейных уравнений с двумя неизвестными. Изучение определителей n–ого порядка и методы их вычисления. Особенности системы из n линейных уравнений с n неизвестными.

    презентация [316,5 K], добавлен 14.11.2014

  • Рассмотрение систем линейных алгебраических уравнений общего вида. Сущность теорем и их доказательство. Особенность трапецеидальной матрицы. Решение однородных и неоднородных линейных алгебраических уравнений, их отличия и применение метода Гаусса.

    реферат [66,4 K], добавлен 14.08.2009

  • Решение системы линейных уравнений методом Гауса. Преобразования расширенной матрицы, приведение ее к треугольному виду. Средства матричного исчисления. Вычисление алгебраических дополнений матрицы. Решение матричного уравнения по правилу Крамера.

    задача [26,8 K], добавлен 29.05.2012

  • Решение систем уравнений методом Гаусса, с помощью формул Крамера. Построение пространства решений однородной системы трех линейных уравнений с четырьмя неизвестными с указанием базиса. Определение размерности пространства решений неоднородной системы.

    контрольная работа [193,5 K], добавлен 28.03.2014

  • Выполнение действий над матрицами. Определение обратной матрицы. Решение матричных уравнений и системы уравнений матричным способом, используя алгебраические дополнения. Исследование и решение системы линейных уравнений методом Крамера и Гаусса.

    контрольная работа [63,2 K], добавлен 24.10.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.