Теория вероятностей

Численное выражение возможности наступления какого-либо события. Классическое определение вероятности. Понятие объема совокупности (выборочной или генеральной). Комплексная оценка параметров генеральной совокупности. Среднее квадратическое отклонение.

Рубрика Математика
Вид лекция
Язык русский
Дата добавления 25.12.2013
Размер файла 602,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Теория вероятностей является одним из классических разделов математики. Она имеет длительную историю. Вероятностные и статистические методы в настоящее время глубоко проникли в приложения. Они используются в физике, технике, экономке, биологии и медицине. Особенно возросла их роль в связи с развитием вычислительной техники. Например, для изучения физических явлений производят наблюдения или опыты. Их результаты обычно регистрируют в виде значений некоторых наблюдаемых величин. При повторении опытов мы обнаруживаем разброс их результатов. Например, повторяя измерения одной и той же величины одним и тем же прибором при сохранении определенных условий (температура, влажность и т.п.), мы получаем результаты, которые хоть немного, но все же отличаются друг от друга. Даже многократные измерения не дают возможности точно предсказать результат следующего измерения. В этом смысле говорят, что результат измерения есть величина случайная.

Случай, случайность -- с ними мы встречаемся повседневно: случайная встреча, случайная поломка, случайная находки, случайная ошибка. Этот ряд можно продолжать бесконечно. Казалось бы, тут лет места для математики--какие уж законы в царстве Случая! Но и здесь наука обнаружила интересные закономерности--они позволяют человеку уверенно чувствовать себя при встреча со случайными событиями.

Как наука теория вероятности зародилась в 17в. Возникновение понятия вероятности было связано как с потребностями страхования, получившего значительное распространение в ту эпоху, когда заметно росли торговые связи и морские путешествия, так и в связи с запросами азартных игр. Слово «азарт», под которым обычно понимается сильное увлечение, горячность, является транскрипцией французского слова, буквально означающего «случай», «риск».

1. Вероятность события

Вероятность, какого-либо события - численное выражение возможности его наступления.

Вероятность события - численная мера возможности его наступления.

Событие А называется благоприятствующим событию В, если всякий раз, когда наступает событие А, наступает и событие В.

События А1, А2, ..., Аn образуют схему случаев, если они:

1) равновозможны;

2) попарно несовместны;

3) образуют полную группу.

В схеме случаев (и только в этой схеме) имеет место классическое определение вероятности P(A) события А. Здесь случаем называют каждое из событий, принадлежащих выделенной полной группе равновозможных и попарно несовместных событий.

Из определения вероятности вытекают следующие ее свойства:

1. Вероятность достоверного события равна единице.

Действительно, если событие достоверно, то каждый случай в схеме случаев благоприятствует событию. В этом случае m = n и, следовательно,

2. Вероятность невозможного события равна нулю.

Действительно, если событие невозможно, то ни один случай из схемы случаев не благоприятствует событию. Поэтому m=0 и, следовательно,

Если n - число всех случаев в схеме, а m - число случаев, благоприятствующих событию А, то вероятность события А определяется равенством:

Математически неограниченное число повторений испытания записывается в виде предела (lim) при N, стремящемся к бесконечности:

Поскольку nN никогда не может превзойти N, то вероятность оказывается заключенной в интервале

Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Действительно, случайному событию благоприятствует лишь часть из общего числа случаев в схеме случаев. Поэтому 0<m<n, а, значит, 0<m/n<1 и, следовательно, 0 < P(A) < 1.

Итак, вероятность любого события удовлетворяет неравенствам

0 ? P(A) ? 1.

2. Взаимоисключающие события

Взаимоисключающие (события) - события, которые не могут происходить одновременно; возникновение одного из них предотвращает возможность возникновения другого (других). Крыса может повернуть или направо или налево в Т - лабиринте; один выбор устраняет другой, по крайней мере в этом испытании, поэтому они и являются взаимоисключающими.

3. Генеральная совокупность

вероятность квадратический численный

Генеральной совокупностью называют совокупность всех мысленно возможных объектов данного вида, над которыми проводятся наблюдения с целью получения конкретных значений случайной величины, или совокупность результатов всех мыслимых наблюдений, проводимых в неизменных условиях над одной из случайных величин, связанных с данным видом объектов.

Объемом совокупности (выборочной или генеральной) называют число объектов этой совокупности. Например, если из 1000 деталей отобрано для обследования 100 деталей, то объем генеральной совокупности N = 1000, а объем выборки n =100. Число объектов генеральной совокупности N значительно превосходит объем выборки n .

Генеральная совокупность может быть конечной (число наблюдений N = const) или бесконечной (N = ?), а выборка из генеральной совокупности -- это всегда результат ограниченного ряда наблюдений. Число наблюдений , образующих выборку, называется объемом выборки. Если объем выборки достаточно велик (n > ?) выборка считается большой, в противном случае она называется выборкой ограниченного объема. Выборка считается малой, если при измерении одномерной случайной величины объем выборки не превышает 30 (n <= 30), а при измерении одновременно нескольких (k) признаков в многомерном пространстве отношение n к k не превышает 10 (n/k < 10). Выборка образует вариационный ряд, если ее члены являются порядковыми статистиками, т. е. выборочные значения случайной величины Х упорядочены по возрастанию (ранжированы), значения же признака называются вариантами.

Оценка параметров генеральной совокупности

Основными параметрами генеральной совокупности являются математическое ожидание (генеральная средняя) М(Х) и среднее квадратическое отклонение s. Это постоянные величины, которые можно оценить по выборочным данным. Оценка генерального параметра, выражаемая одним числом, называется точечной.

Точечной оценкой генеральной средней является выборочное среднее

Выборочным средним называется среднее арифметическое значение признака выборочной совокупности.

Если все значения x1, x2,..., xn признака выборки различны (или если данные не сгруппированы), то:

Если же все значения признака x1, x2,..., xn имеют соответственно частоты n1, n2,..., nk, причем n1 + n2 +...+ nk = n (или если выборочное среднее вычисляется по вариационному ряду), то

В том случае, когда статистические данные представлены в виде интервального вариационного ряда, при вычислении выборочного среднего значениями вариант считают середины интервалов.

Выборочное среднее является основной характеристикой положения, показывает центр распределения совокупности, позволяет охарактеризовать исследуемую совокупность одним числом, проследить тенденцию развития, сравнить различные совокупности (выборочное среднее является той точкой, сумма отклонений наблюдений от которой равна 0).

Для оценки степени разброса (отклонения) какого-то показателя от его среднего значения, наряду с максимальным и минимальным значениями, используются понятия дисперсии и стандартного отклонения.

Дисперсия выборки или выборочная дисперсия - это мера изменчивости переменной. Термин впервые введен Фишером в 1918 году.

Выборочной дисперсией Dв называют среднее арифметическое квадратов отклонения наблюдаемых значений признака от их среднего значения .

Если все значения x1, x2,..., xn признака выборки объема n различны, то:

Если же все значения признака x1, x2,..., xn имеют соответственно частоты n1, n2,..., nk, причем n1 + n2 +...+ nk = n, то

Дисперсия меняется от нуля до бесконечности. Крайнее значение 0 означает отсутствие изменчивости, когда значения переменной постоянны.

Среднее квадратическое отклонение (стандартное отклонение), вычисляется как корень квадратный из дисперсии.

Чем выше дисперсия или стандартное отклонение, тем сильнее разбросаны значения переменной относительно среднего.

Непараметрическими характеристиками положения являются мода и медиана.

Модой Mo называется варианта, имеющая наибольшую частоту или относительную частоту.

Медианой Me называется варианта, которая делит вариационный ряд на две части, равные по числу вариант.

При нечетном числе вариант (n=2k+1)

Me = xk+1,

а при четном числе вариант (n=2k)

Me = (xk + xk+1)/2.

Средняя ошибка (m) выборочных средней и доли для разных видов выборки

Основные характеристики параметров генеральной и выборочной совокупности.

В основе статистических выводов проведенного исследования лежит распределение случайной величины , наблюдаемые же значения (х1, х2, … , хn) называются реализациями случайной величины Х (n -- объем выборки). Распределение случайной величины в генеральной совокупности носит теоретический, идеальный характер, а ее выборочный аналог является эмпирическим распределением. Некоторые теоретические распределения заданы аналитически, т.е. их параметры определяют значение функции распределения в каждой точке пространства возможных значений случайной величины . Для выборки же функцию распределения определить трудно, а иногда невозможно, поэтому параметры оценивают по эмпирическим данным, а затем их подставляют в аналитическое выражение, описывающее теоретическое распределение. При этом предположение (или гипотеза) о виде распределения может быть как статистически верным, так и ошибочным. Но в любом случае восстановленное по выборке эмпирическое распределение лишь грубо характеризует истинное. Важнейшими параметрами распределений являются математическое ожидание и дисперсия .

По своей природе распределения бывают непрерывными и дискретными. Наиболее известным непрерывным распределением является нормальное. Выборочными аналогами параметров идля него являются: среднее значение и эмпирическая дисперсия . Среди дискретных в социально-экономических исследованиях наиболее часто применяется альтернативное (дихотомическое) распределение. Параметр математического ожидания этого распределения выражает относительную величину (или долю) единиц совокупности, которые обладают изучаемым признаком (она обозначена буквой ); доля совокупности, не обладающая этим признаком, обозначается буквой q (q = 1 -- p). Дисперсия же альтернативного распределения также имеет эмпирический аналог .

В зависимости от вида распределения и от способа отбора единиц совокупности по-разному вычисляются характеристики параметров распределения.

Долей выборки kn называется отношение числа единиц выборочной совокупности к числу единиц генеральной совокупности:

kn = n/N

Выборочная доля w -- это отношение единиц, обладающих изучаемым признаком x к объему выборки n:

w = nn/n.

Пример. В партии товара, содержащей 1000 ед., при 5% выборке доля выборки kn в абсолютной величине составляет 50 ед. (n = N*0,05); если же в этой выборке обнаружено 2 бракованных изделия, то выборочная доля брака w составит 0,04 (w = 2/50 = 0,04 или 4%).

Так как выборочная совокупность отлична от генеральной, то возникают ошибки выборки.

4. Ошибка выборки

При любом статистическом наблюдении (сплошном и выборочном) могут встретиться ошибки двух видов: регистрации и репрезентативности. Ошибки регистрации могут иметь случайный и систематический характер. Случайные ошибки складываются из множества различных неконтролируемых причин, носят непреднамеренный характер и обычно по совокупности уравновешивают друг друга (например, изменения показателей прибора при температурных колебаниях в помещении).

Систематические ошибки тенденциозны, так как нарушают правила отбора объектов в выборку (например, отклонения в измерениях при изменении настройки измерительного прибора).

Пример. Для оценки социального положения населения в городе предусмотрено обследовать 25% семей. Если при этом выбор каждой четвертой квартиры основан на ее номере, то существует опасность отобрать все квартиры только одного типа (например, однокомнатные), что обеспечит систематическую ошибку и исказит результаты; выбор же номера квартиры по жребию более предпочтителен, так как ошибка будет случайной.

Ошибки репрезентативности присущи только выборочному наблюдению, их невозможно избежать и они возникают в результате того, что выборочная совокупность не полностью воспроизводит генеральную. Значения показателей, получаемых по выборке, отличаются от показателей этих же величин в генеральной совокупности (или получаемых при сплошном наблюдении).

Ошибка выборочного наблюдения есть разность между значением параметра в генеральной совокупности и ее выборочным значением. Для среднего значения количественного признака она равна: , а для доли (альтернативного признака) -- .

Ошибки выборки свойственны только выборочным наблюдениям. Чем больше эти ошибки, тем больше эмпирическое распределение отличается от теоретического. Параметры эмпирического распределения и являются случайными величинами, следовательно, ошибки выборки также являются случайными величинами, могут принимать для разных выборок разные значения и поэтому принято вычислять среднюю ошибку.

Средняя ошибка выборки есть величина , выражающая среднее квадратическое отклонение выборочной средней от математического ожидания. Эта величина при соблюдении принципа случайного отбора зависит прежде всего от объема выборки и от степени варьирования признака: чем больше и чем меньше вариация признака (следовательно, и значение ), тем меньше величина средней ошибки выборки . Соотношение между дисперсиями генеральной и выборочной совокупностей выражается формулой:

т.е. при достаточно больших можно считать, что . Средняя ошибка выборки показывает возможные отклонения параметра выборочной совокупности от параметра генеральной. В табл. 1 приведены выражения для вычисления средней ошибки выборки при разных методах организации наблюдения.

Таблица 1. Средняя ошибка (m) выборочных средней и доли для разных видов выборки

Где - средняя из внутригрупповых выборочных дисперсий для непрерывного признака;

- средняя из внутригрупповых дисперсий доли;

-- число отобранных серий, -- общее число серий;

,

где -- средняя -й серии;

-- общая средняя по всей выборочной совокупности для непрерывного признака;

,

где -- доля признака в -й серии;

-- общая доля признака по всей выборочной совокупности.

Однако о величине средней ошибки можно судить лишь с определенной, вероятностью Р (Р ? 1). Ляпунов А.М. доказал, что распределение выборочных средних , a следовательно, и их отклонений от генеральной средней, при достаточно большом числе приближенно подчиняется нормальному закону распределения при условии, что генеральная совокупность обладает конечной средней и ограниченной дисперсией.

Математически это утверждение для средней выражается в виде:

а для доли выражение (1) примет вид:

где - есть предельная ошибка выборки, которая кратна величине средней ошибки выборки , а коэффициент кратности -- есть критерий Стьюдента ("коэффициент доверия"), предложенный У.С. Госсетом (псевдоним "Student"); значения для разного объема выборки хранятся в специальной таблице.

5. Распространение выборочных результатов на генеральную совокупность

Конечной целью выборочного наблюдения является характеристика генеральной совокупности. При малых объемах выборки эмпирические оценки параметров ( и ) могут существенно отклоняться от их истинных значений ( и ). Поэтому возникает необходимость установить границы, в пределах которых для выборочных значений параметров ( и ) лежат истинные значения ( и ).

Доверительным интервалом какого-либо параметра генеральной совокупности называется случайная область значений этого параметра, которая с вероятностью близкой к 1 (надежностью) содержит истинное значение этого параметра.

Предельная ошибка выборки Д позволяет определить предельные значения характеристик генеральной совокупности и их доверительные интервалы, которые равны:

Нижняя граница доверительного интервала получена путем вычитания предельной ошибки из выборочного среднего (доли), а верхняя -- путем ее добавления.

Доверительный интервал для средней использует предельную ошибку выборки и для заданного уровня достоверности определяется по формуле:

Это означает, что с заданной вероятностью Р, которая называется доверительным уровнем и однозначно определяется значением t, можно утверждать, что истинное значение средней лежит в пределах от , а истинное значение доли -- в пределах от

При расчете доверительного интервала для трех стандартных доверительных уровней Р = 95%, Р = 99% и Р = 99,9% значение выбирается по таблице Стьюдента. Приложения в зависимости от числа степеней свободы . Если объем выборки достаточно велик, то соответствующие этим вероятностям значения t равны: 1,96, 2,58 и 3,29. Таким образом, предельная ошибка выборки позволяет определить предельные значения характеристик генеральной совокупности и их доверительные интервалы:

Распространение результатов выборочного наблюдения на генеральную совокупность в социально-экономических исследованиях имеет свои особенности, так как требует полноты представительности всех ее типов и групп. Основой для возможности такого распространения является расчет относительной ошибки:

где Д%- относительная предельная ошибка выборки; , .

Существуют два основных метода распространения выборочного наблюдения на генеральную совокупность: прямой пересчет и способ коэффициентов.

Сущность прямого пересчета заключается в умножении выборочного среднего значения на объем генеральной совокупности .

Способ коэффициентов целесообразно использовать в случае, когда выборочное наблюдение проводится с целью уточнения данных сплошного наблюдения.

При этом используют формулу:

,

где все переменные -- это численность совокупности:

-- с поправкой на недоучет,

- без этой поправки,

-- в контрольных точках

-- в тех же точках по данным контрольных мероприятий.

Заключение

Таким образом, рассмотрев теорию вероятности, ее историю и положения и возможности, можно утверждать, что возникновение данной теории не было случайным явлением вы науке, а было вызвано необходимостью дальнейшего развития технологии и кибернетики, поскольку существующее программное управление не может помочь человеку в создании таких кибернетических машин, которые, подобно человеку, будут мыслить самостоятельно. И именно теория вероятности может способствовать появлению искусственного разума. «Процессы управления, где бы они ни протекали - живых организмах, машинах или обществе,- происходят по одним и тем же законам», - провозгласила кибернетика. А значит, и те, пусть еще не познанные до конца, процессы, что протекают в голове человека и позволяют ему гибко приспосабливаться к изменяющейся обстановке, можно воспроизвести искусственно в сложных автоматических устройствах. Важнейшим понятием математики является понятие функции, но почти всегда речь шла об однозначной функции, у которой одному значению аргумента соответствует только одно значение функции и функциональная связь между ними четко определенная. Однако в реальности происходят случайные явления, и многие события имеют не определенный характер связей. Поиск закономерностей в случайных явлениях - это задача раздела математики теория вероятности. Теория вероятности является инструментом для изучения скрытых и неоднозначных связей различных явлений во многих отраслях науки, техники и экономики.

Теория вероятности позволяет достоверно вычислить колебания спроса, предложения, цен и других экономических показателей. Также теория вероятности является основой такой науки как статистика. На формулах этого раздела математики построено так называемая теория игр.

Список литературы

вероятность квадратический совокупность

1. Беляев Ю.К. и Носко В.П. «Основные понятия и задачи математической статистики» - М.: Изд-во МГУ, ЧеРо, 2006.

2. В.Е. Гмурман «Теория вероятностей и математическая статистика. - М.: Высшая школа, 1997.

3. Корн Г., Корн Т. «Справочник по математике для научных работников и инженеров. - СПБ: Издательство “Лань” 2011.

4. Пехелецкий И.Д. «Математика учебник для студентов» - М. Академия, 2012.

5. Суходольский В.Г. «Лекции по высшей математике для гуманитариев» - СПБ Издательство Санкт-Петербургского государственного университета. 2013.

6. Гнеденко Б.В. и Хинчин А.Я. «Элементарное введение в теорию вероятностей» 3 изд., М. - Л., 2012.

7. Гнеденко Б.В. «Курс теории вероятностей» 4 изд., М., 2011.

8. Феллер В. «Введение в теорию вероятностей и её приложение» (Дискретные распределения), пер. с англ., 2 изд., т. 1-2, М., 2010.

9. Бернштейн С.Н. «Теория вероятностей» 4 изд., М. - Л., 2011.

Размещено на Allbest.ru


Подобные документы

  • Классическое определение вероятности. Формулы сложения и умножения вероятностей. Дисперсия случайной величины. Число равновозможных событий . Матрица распределения вероятностей системы. Среднее квадратическое отклонение, доверительный интервал.

    контрольная работа [89,7 K], добавлен 07.09.2010

  • Пространство элементарных событий. Понятие совместных и несовместных событий и их вероятностей. Плотность распределения вероятностей системы двух случайных величин. Числовые характеристики системы. Закон генеральной совокупности и его параметры.

    контрольная работа [98,1 K], добавлен 15.06.2012

  • Пространство элементарных событий, совместные и несовместные события, поиск их вероятности. Функция распределения системы случайных величин. Числовые характеристики системы: математическое ожидание и дисперсия. Оценка закона генеральной совокупности.

    задача [73,6 K], добавлен 15.06.2012

  • Определение числа исходов, благоприятствующих данному событию. Теорема умножения вероятностей и сложения несовместных событий, локальная теорема Лапласа. Расчет среднеквадратического отклонения величин. Несмещенная оценка генеральной средней и дисперсии.

    контрольная работа [91,0 K], добавлен 31.01.2011

  • Статическая проверка статистических гипотез. Ошибки первого и второго рода. Числовые характеристики случайной величины, распределенной по биномиальному закону. Проверка гипотезы о биномиальном распределении генеральной совокупности по критерию Пирсона.

    курсовая работа [674,3 K], добавлен 03.05.2011

  • Классическое определение вероятности события. Способы вычисления наступления предполагаемого события. Построение многоугольника распределения. Поиск случайных величин с заданной плотностью распределения. Решение задач, связанных с темой вероятности.

    задача [104,1 K], добавлен 14.01.2011

  • Изучение закономерностей массовых случайных явлений. Степень взаимосвязи теории вероятностей и статистики. Невозможные, возможные и достоверные события. Статистическое, классическое, геометрическое, аксиоматическое определение вероятности. Формула Бейеса.

    реферат [114,7 K], добавлен 08.05.2011

  • Определение вероятности того, что из урны взят белый шар. Нахождение математического ожидания, среднего квадратического отклонения и дисперсии случайной величины Х, построение гистограммы распределения. Определение параметров распределения Релея.

    контрольная работа [91,7 K], добавлен 15.11.2011

  • Возникновение теории вероятности как науки. Классическое определение вероятности. Частость наступления события. Операции над событиями. Сложение и умножение вероятности. Схема повторных независимых испытаний (система Бернулли). Формула полной вероятности.

    реферат [175,1 K], добавлен 22.12.2013

  • Определение и оценка вероятности наступления заданного события. Методика решения задачи, с использованием теоремы сложения и умножения, формулы полной вероятности или Байеса. Применение схемы Бернулли при решении задач. Расчет квадратического отклонения.

    практическая работа [55,0 K], добавлен 23.08.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.