Дифференциальное исчисление

Возникновение и развитие математики как научной дисциплины. Основные понятия дифференциации функций: предел, производная, непрерывность. Исчисление определенного и неопределенного интегралов. Нахождение промежутков выпуклости и точек перегиба функции.

Рубрика Математика
Вид учебное пособие
Язык русский
Дата добавления 28.12.2013
Размер файла 1,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.


Подобные документы

  • Дифференциальное исчисление функции одной переменной: определение предела, асимптот функций и глобальных экстремумов функций. Нахождение промежутков выпуклости и точек перегиба функции. Примеры вычисления неопределенного интеграла, площади плоской фигуры.

    задача [484,3 K], добавлен 02.10.2009

  • Нахождение асимптот функции, локальных и глобальных экстремумов. Промежутки выпуклости и точки перегиба функции. Область определения функции и точки пересечения с осями. Нахождение определенного и неопределенного интегралов. Выполнение деления с остатком.

    контрольная работа [312,9 K], добавлен 26.02.2012

  • Условия существования предела в точке. Расчет производных функции, заданной параметрически. Нахождение точки экстремума, промежутков возрастания и убывания функций, выпуклости вверх и вниз. Уравнение наклонной асимптоты. Точка локального максимума.

    курсовая работа [836,0 K], добавлен 09.12.2013

  • Историческая справка о возникновении и развитии математики как научной дисциплины. Разработка учебного тематического и календарного планов преподавания предмета "Высшая математика". Этапы составление плана-конспекта занятия на тему "Производная".

    курсовая работа [303,7 K], добавлен 25.09.2010

  • Элементы аналитической геометрии и линейной алгебры. Методы построения графика функции. Предел и непрерывность функции. Дифференциальное исчисление функции одной переменной. Определители и системы уравнений. Построение прямой и плоскости в пространстве.

    методичка [1,0 M], добавлен 24.08.2009

  • Изучение способов нахождения пределов функций и их производных. Правило дифференцирования сложных функций. Исследование поведения функции на концах заданных промежутков. Вычисление площади фигуры при помощи интегралов. Решение дифференциальных уравнений.

    контрольная работа [75,6 K], добавлен 23.10.2010

  • Функция многих переменных. Предел и непрерывность функции многих переменных. Частные производные. Дифференцируемость функции. Производная в направлении. Градиент. Локальные экстремумы. Интегральное исчисление функций. Неопределённный интеграл.

    курс лекций [309,0 K], добавлен 08.04.2008

  • Элементы линейной алгебры. Элементы аналитической геометрии и векторной алгебры. Введение в математический анализ. Дифференциальное исчисление функций одной переменной. Дифференциальное исчисление функций нескольких независимых переменных. Интеграл.

    методичка [90,5 K], добавлен 02.11.2008

  • Введение в анализ и дифференциальное исчисление функции одного переменного. Нахождение локальных экстремумов функции. Интегральное исчисление функции, пределы интегрирования. Практический пример определения площади плоской фигуры, ограниченной кривыми.

    контрольная работа [950,4 K], добавлен 20.01.2014

  • Вычисление первого и второго замечательных пределов, неопределенного и определенного интегралов, площади криволинейной трапеции, координат середин сторон треугольника с заданными вершинами. Определение критических точек и асимптот графика функции.

    контрольная работа [138,8 K], добавлен 29.01.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.