Задачи оптимизации и методы их решения
Трудности решения задач линейного программирования как задач на нахождения значений параметров, обеспечивающих экстремум функции при наличии ограничений. Классификация оптимизации: о пищевом рационе, планировании производства и загрузке оборудования.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 20.12.2013 |
Размер файла | 36,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
9
Содержание
1. Задача линейного программирования (ЗЛП)
2. Трудности решения ЗЛП
3. Классификация задач оптимизации
1. Задача линейного программирования (ЗЛП)
Термин линейное программирование появился в Америке в середине 40-х годов (первая американская работа по частной задаче линейного программирования опубликована в 1941 г.). В Советском Союзе исследования в этой области начались ранее. В конце 30-х годов целый ряд существенных результатов по линейному программированию был установлен Л.В. Канторовичем.
Задача линейного программирования - это задача нахождения значений параметров, обеспечивающих экстремум функции при наличии ограничений на аргументы.
Задачи линейного программирования являются самыми простыми и лучше изученными задачами. Для них характерно: показатель эффективности (целевая функция) выражается линейной зависимостью; ограничения на решения - линейные равенства или неравенства.
2. Трудности решения ЗЛП
Трудности решения задач линейного программирования зависят от: вида зависимости, связывающей целевую функцию с элементами решения; размерности задачи, то есть от количества элементов решения х1, х2,…, xn; вида и количества ограничений на элементы решений.
3. Классификация задач оптимизации
Задача о рациональном питании (задача о пищевом рационе).
ПОСТАНОВКА ЗАДАЧИ. Ферма производит откорм скота с коммерческой целью. Для простоты допустим, что имеется всего четыре вида продуктов: П1, П2, П3, П4; стоимость единицы каждого продукта равна соответственно С1, С2, С3, С4. Из этих продуктов требуется составить пищевой рацион, который должен содержать: белков - не менее bi единиц; углеводов - не менее b2 единиц; жиров - не менее b3 единиц. Для продуктов П1, П2, П3, П4 содержание белков, углеводов и жиров (в единицах на единицу продукта) известно и задано в таблице, где aij (i=1,2,3,4; j=1,2,3) - какие - то определённые числа; первый индекс указывает номер продукта, второй - номер элемента (белки, углеводы, жиры).
продукт |
элементы |
|||
белки |
углеводы |
жиры |
||
П1 П2 П3 П4 |
A11A21A31A41 |
A12A22A32A42 |
A13A23A33A43 |
Требуется составить такой пищевой рацион (т.е. назначить количества продуктов П1, П2, П3, П4, входящих в него), чтобы условия по белкам, углеводам и жирам были выполнены и стоимость рациона была минимальна.
МАТЕМАТИЧЕСКУЮ МОДЕЛЬ. Обозначим x1, x2, x3, x4 количества продуктов П1, П2, П3, П4, входящих в рацион. Показатель эффективности, который требуется минимизировать, - стоимость рациона (обозначим её L): она линейно зависит от элементов решения x1, x2, x3, x4.
Целевая функция:
Система ограничений:
a11x1+a21x2+a31x3+a41x4?b1
a12x1+a22x2+a32x3+a42x4?b2
a13x1+a23x2+a32x3+a43x4?b3
Эти линейные неравенства представляют собой ограничения, накладываемые на элементы решения x1, x2, x3, x4.
Таким образом, поставленная задача сводится к следующей: найти такие неотрицательные значения переменных x1, x2, x3, x4, чтобы они удовлетворяли ограничениям - неравенствам и одновременно обращали в минимум линейную функцию этих переменных:
Задача о планировании производства.
ПОСТАНОВКА ЗАДАЧИ. Предприятие производит изделия трёх видов: U1, U2, U3. По каждому виду изделия предприятию спущен план, по которому оно обязано выпустить не мене b1 единиц изделия U1, не мене b2 единиц изделия U2 и не мене b3 единиц изделия U3. План может быть перевыполнен, но в определённых границах; условия спроса ограничивают количества произведённых единиц каждого типа: не более соответственно 1, 2, 3 единиц. На изготовление изделий идёт какое-то сырьё; всего имеется четыре вида сырья: s1, s2, s3, s4, причём запасы ограничены числами 1, 2, 3, 4 единиц каждого вида сырья. Теперь надо узнать какое количество сырья каждого вида идёт на изготовление каждого вида изделий. Обозначим aij количество единиц сырья вида si (I= 1, 2, 3, 4), потребное на изготовление одной единицы изделия Uj (j= 1, 2, 3). Первый индекс у числа aij - вид изделия, второй - вид сырья. Значения aij сведены в таблицу (матрицу).
Сырьё |
Изделия |
|||
U1 |
U2 |
U3 |
||
S1S2S3S4 |
a11a12a13a14 |
a21a22a23a24 |
a31a32a33a34 |
При реализации одно изделие U1 приносит предприятию прибыль c1, U2 - прибыль c2, U3 - прибыль c3. Требуется так спланировать производство (сколько каких изделий производить), чтобы план был выполнен или перевыполнен (но при отсутствии «затоваривания»), а суммарная прибыль обращалась в максимум.
МАТЕМАТИЧЕСКАЯ МОДЕЛЬ. Элементами решения будут x1, x2, x3 - количества единиц изделий U1, U2, U3, которые мы произведём. Обязательность выполнения планового задания запишется в виде трёх ограничений - неравенств: x1b1, x2b2, x3b3.
Отсутствие изделий продукции (затоваривания) даёт нам ещё три ограничения - неравенства: x11, x22, x33.
Целевая функция:
L=c1x1+c2x2+c3x3> max.
Система ограничений:
a11x1+a21x2+a31x31.
a12x1+a22x2+a32x32.
a13x1+a23x2+a33x33.
a14x1+a24x2+a34x34.
оптимизация линейный планирование программирование
Задача о загрузки оборудования.
ПОСТАНОВКА ЗАДАЧИ. Ткацкая фабрика располагает двумя видами станков, из них N1 станков типа 1 и N2 станков типа 2.
Станки могут производить три вида тканей: T1, T2, T3, но с разной производительностью.
Данные aij производительности станков в таблице (первый индекс - тип станка, второй - вид ткани).
Каждый метр ткани вида T1 приносит фабрике доход c1, вида Т2 - доход с2, Т3 - доход с3.
Тип станка |
Вид ткани |
|||
Т1 |
Т2 |
Т3 |
||
12 |
а11а21 |
а12а22 |
а13а23 |
Фабрике предписан план согласно которому она должна производить в месяц не менее b1 метров ткани Т1, b2 метров ткани Т2, b3 метров ткани Т3; количество метров каждого вида ткани не должно превышать соответственно 1, 2, 3 метров. Кроме того, все без исключения станки должны быть загружены. Требуется так распределить загрузку станков производством тканей Т1, Т2, Т3, чтобы суммарный месячный доход был максимален.
МАТЕМАТИЧЕСКАЯ МОДЕЛЬ. Введём букву x с двумя индексами (первый - тип станка, второй - вид ткани). Всего будет шесть элементов решения: x11 x12 x13 x21 x22 x23 .
Здесь x11 - количество станков типа 1, занятых изготовлением ткани Т1, x12 - количество станков типа 1, занятых изготовлением ткани Т2 и т.д.
Запишем суммарный доход от производства всех видов тканей. Суммарное количество метров ткани Т1, произведённое всеми станками, будет равно a11x11+a21x21 и принесёт доход c1(a11x11+a21x21).
Целевая функция:
L=c1 (a11x11+a21x21)+c2 (a12x12+a22x22)+c3 (a13x13+a23x23) >max
Система ограничений:
Обеспечим выполнения плана ограничениями по минимальным параметрам:
a11x11+a21x21b1,
a12x12+a22x22b2,
a13x13+a23x23b3,
Ограничим выполнение плана по максимальным параметрам:
a11x11+a21x211,
a12x12+a22x222,
a13x13+a23x233,
Теперь запишем ограничения, связанные с наличием оборудования и его полной загрузкой. Суммарное количество станков типа 1, занятых изготовлением всех тканей, должно быть равно N1; типа 2 - N2.
x11+x12+x13=N1,
x21+x22+x23=N2,
линейный планирование программирование
Задача о снабжении сырьём.
ПОСТАНОВКА ЗАДАЧИ. Имеется три промышленных предприятия: П1, П2, П3, требующих снабжения определённым видом сырья. Потребности в сырье каждого предприятия равны соответственно a1, a2, a3 единиц. Имеются пять сырьевых баз, расположенных от предприятий на каких - то расстояниях и связанных с ними путями сообщения с разными тарифами. Единица сырья, получаемая предприятием Пi c базы Бj , обходится предприятию в сij рублей (1 индекс - номер предприятия, 2 - номер базы).
Возможности снабжения сырьём с каждой базы ограничены её производственной мощностью: базы Б1, Б2, Б3, Б4, Б5 могут дать не более b1, b2, b3, b4, b5 единиц сырья. Требуется составить такой план снабжения предприятий сырьём (с какой базы, куда и какое количество сырья везти), чтобы потребности предприятий были обеспечены при минимальных расходах на сырьё.
Предприятия |
Базы |
|||||
Б1 |
Б2 |
Б3 |
Б4 |
Б5 |
||
П1П2П3 |
С11С21С31 |
С12С22С32 |
С13С23С33 |
С14С24С34 |
С15С25С35 |
МАТЕМАТИЧЕСКАЯ МОДЕЛЬ. Обозначим xij количества сырья с j - ой базы. Всего план будет состоять из 15 элементов решения: x11 x12 x13 x14 x15 x21 x22 x23 x24 x25 x31 x32 x33 x34 x35.
Целевая функция:
Система ограничений:
x11+x12+x13+x14+x15=a1,
x21+x22+x23+x24+x25=a2,
x31+x32+x33+x34+x35=a3,
x11+x21+x31b1,
x12+x22+x32b2,
x13+x23+x33b3, (4.3.)
x14+x24+x34b4,
x15+x25+x35b5,
Размещено на Allbest.ru
Подобные документы
Рассмотрение эффективности применения методов штрафов, безусловной оптимизации, сопряженных направлений и наискорейшего градиентного спуска для решения задачи поиска экстремума (максимума) функции нескольких переменных при наличии ограничения равенства.
контрольная работа [1,4 M], добавлен 16.08.2010Поиск оптимальных значений некоторых параметров в процессе решения задачи оптимизации. Сравнение двух альтернативных решений с помощью целевой функции. Теорема Вейерштрасса. Численные методы поиска экстремальных значений функций. Погрешность решения.
презентация [80,6 K], добавлен 18.04.2013Развитие численных линейных методов решения задач линейного программирования. Знакомство с методами поиска целевой функции: равномерный симплекс, методы Коши, Ньютона, сопряжённого градиенты, квазиньютоновский метод. Алгоритмы нахождения экстремума.
курсовая работа [716,1 K], добавлен 12.07.2012Численные методы поиска безусловного экстремума. Задачи безусловной минимизации. Расчет минимума функции методом покоординатного спуска. Решение задач линейного программирования графическим и симплексным методом. Работа с программой MathCAD.
курсовая работа [517,9 K], добавлен 30.04.2011Проектирование методов математического моделирования и оптимизации проектных решений. Использование кусочной интерполяции при решении задач строительства автомобильных дорог. Методы линейного программирования. Решение специальных транспортных задач.
методичка [690,6 K], добавлен 26.01.2015Основные понятия математического моделирования, характеристика этапов создания моделей задач планирования производства и транспортных задач; аналитический и программный подходы к их решению. Симплекс-метод решения задач линейного программирования.
курсовая работа [2,2 M], добавлен 11.12.2011Предназначена библиотеки "simplex" для оптимизации линейных систем с использованием симплексного алгоритма. Построение экономико-математической модели формирования плана производства. Основные виды транспортных задач, пример и способы ее решения.
курсовая работа [477,9 K], добавлен 12.01.2011Оптимизация как раздел математики, ее определение, сущность, цели, формулировка и особенности постановки задач. Общая характеристика различных методов математической оптимизации функции. Листинг программ основных методов решения задач оптимизации функции.
курсовая работа [414,1 K], добавлен 20.01.2010Математическое программирование - область математики, в которой изучаются методы решения задач условной оптимизации. Основные понятия и определения в задачах оптимизации. Динамическое программирование – математический метод поиска оптимального управления.
презентация [112,6 K], добавлен 23.06.2013Структура текстовой задачи. Условия и требования задач и отношения между ними. Методы и способы решения задач. Основные этапы решения задач. Поиск и составление плана решения. Осуществление плана решения. Моделирование в процессе решения задачи.
презентация [247,7 K], добавлен 20.02.2015