Методы оптимальных решений

Предел функций многих переменных. Анализ пределов и непрерывности в многомерных пространствах. Нахождение частной производной и кратное интегрирование. Фундаментальная теорема анализа функций многих переменных. Теоремы интегрирования векторного анализа.

Рубрика Математика
Вид контрольная работа
Язык немецкий
Дата добавления 27.11.2013
Размер файла 87,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ

им.В.С. Черномырдина

Кафедра "Экономики и управления на предприятии нефтяной и газовой промышленности"

КОНТРОЛЬНАЯ РАБОТА

по дисциплине "Методы оптимальных решений"

Студента: Бутузова А.С

2013 г.

1. Предел функций многих переменных

Многомерный анализ (также известный как многомерное или многовариантное исчисление) является расширением исчисления функций одной переменной в исчисление функций нескольких переменных: функции, которые дифференцируются и интегрируются, затрагивая несколько переменных, а не одну.

Пределы и непрерывность

Исследование пределов и непрерывности в многомерных пространствах приводит ко многим нелогичным и патологическим результатам, не свойственным функциям одной переменной. Например, существуют скалярные функции двух переменных, имеющих точки в области определения, которые при приближении вдоль произвольной прямой дают специфический предел, и дают другой предел при приближении вдоль параболы. Функция

стремится к нулю по любой прямой, проходящей через начало координат. Однако, когда к началу координат приближаются вдоль параболы , предел = 0.5. Так как пределы по разным траекториям не совпадают, предела не существует.

Функция имеет пределом число A при стремлении переменных , соответственно, к , если для каждого число найдется такое число , что , то есть .

Функция называется непрерывной в точке , если предельное значение этой функции в точке существует и равно частному значению .

Функция называется непрерывной на множестве , если она непрерывна в каждой точке этого множества.

Нахождение частной производной

Основная статья: Частная производная

Частная производная обобщает понятие производной на случай нескольких измерений. Частная производная функции нескольких переменных -- это производная относительно одной переменной, все другие переменные при нахождении считаются константами.

Для упрощения ограничимся случаем функций от трех переменных; все дальнейшее, однако, справедливо и для функций любого числа переменных.

Пусть в некоторой области имеем функцию ; возьмем точку в этой области. Если мы будем считать и за постоянные значения и , и будем менять , то будет функцией от одной переменной (в окрестности ); можно поставить вопрос о вычислении ее производной в точке . Придадим этому значению приращение , тогда функция получит приращение

которое можно было бы назвать ее частным приращением (по ), поскольку оно вызвано изменением значения лишь одной переменной. По самому определению производной, она представляет собою предел

Эта производная называется частной производной функции по в точке .

Аналогично определяются и частные производные функции по и в точке . Само вычисление частной производной по существу не представляет ничего нового по сравнению с вычислением обыкновенной производной. Частные производные могут быть объединены интересными способами для создания более сложных выражений производных. В векторном исчислении оператор набла () используется для определения понятий градиента, дивергенции, и ротора с точки зрения частных производных. Матрица частных производных -- матрица Якоби -- может использоваться для представления производной функции (отображения) между двумя пространствами произвольной размерности. Таким образом производная может быть представлена как линейное преобразование, которое изменяется в зависимости от точки из области определения функции.

Дифференциальные уравнения, содержащие частные производные, называют дифференциальными уравнениями в частных производных или (Д)УЧП. Эти уравнения как правило сложнее для решения чем обычные дифференциальные уравнения, которые содержат производные относительно только одной переменной.

Кратное интегрирование

Основная статья: Кратный интеграл

Интеграл называется кратным интегралом, если . В случае он называется двойным, в случае -- тройным интегралом, а в случае произвольного -- n-кратным. Его обозначают также . При такой записи под символом следует понимать точку пространства , под символом -- произведение , а под знаком -- n-кратный интеграл по n-мерной области .

Кратный интеграл расширяет понятие интеграла на функции многих переменных. Двойные и тройные интегралы могут использоваться для вычисления площадей и объемов областей в плоскости и в пространстве. Теорема Тонелли -- Фубини гарантирует, что кратный интеграл может быть вычислен как повторный интеграл.

Поверхностный интеграл и криволинейный интеграл используются для интегрирования по многообразиям, таким как поверхности и кривые.

Фундаментальная теорема анализа функций многих переменных

В математическом анализе функций одной переменной фундаментальная теорема устанавливает связь между производной и интегралом. Связь между производной и интегралом в анализе функций многих переменных воплощена в известных теоремах интегрирования векторного анализа:

- Теорема Ньютона -- Лейбница

- Теорема Стокса

- Теорема Остроградского -- Гаусса

- Теорема Грина

При более углубленном изучении многомерного математического анализа видно, что эти четыре теоремы -- частные случаи более общей теоремы, теоремы Стокса об интегрировании дифференциальных форм.

функция предел интегрирование векторный

Список использованной литературы

1. Фихтенгольц, Г. М. Глава пятая. Функции нескольких переменных // Курс дифференциального и интегрального исчисления. -- Т. 1.

2. Ильин, В. А., Позняк, Э. Г. Глава 14. Функции нескольких переменных // Основы математического анализа. -- Т. 1. -- (Курс высшей математики и математической физики).

Размещено на Allbest.ru


Подобные документы

  • Функция многих переменных. Предел и непрерывность функции многих переменных. Частные производные. Дифференцируемость функции. Производная в направлении. Градиент. Локальные экстремумы. Интегральное исчисление функций. Неопределённный интеграл.

    курс лекций [309,0 K], добавлен 08.04.2008

  • Понятие функции нескольких переменных. Аргументы, частное значение и область применения функции. Рассмотрение функции двух и трех переменных. Предел функции нескольких переменных, теорема. Главная сущность непрерывности функции нескольких переменных.

    реферат [86,3 K], добавлен 30.10.2010

  • Изменение порядка интегрирования функции. Поиск предела интегрирования. Расчет площади фигуры, ограниченной графиками функций. Поиск объема тела, ограниченного поверхностями. Определение производной скалярного поля в точке по направлению вектора.

    контрольная работа [233,2 K], добавлен 28.03.2014

  • Понятие, предел и непрерывность функции двух переменных. Частные производные первого порядка, нахождение полного дифференциала. Частные производные высших порядков и экстремум функции нескольких переменных. Необходимые условия существования экстремума.

    контрольная работа [148,6 K], добавлен 02.02.2014

  • Многие переменные, минимизация их функций. Точки максимума и минимума называются точками экстремума функции. Условия существования экстремумов функции многих переменных. Квадратичная форма, принимающая, как положительные, так и отрицательные значения.

    реферат [70,2 K], добавлен 05.09.2010

  • Изменение порядка интегрирования функции. Расчет площади фигуры, ограниченной графиками функций. Поиск предела интегрирования. Определение производной скалярного поля в точке по направлению вектора. Поиск объема тела, ограниченного поверхностями.

    контрольная работа [249,8 K], добавлен 28.03.2014

  • Определение предела последовательности. Понятие производной и правила дифференцирования. Теоремы Роля, Лангража, правило Лапиталя. Исследования графиков функций. Таблица неопределенных и вычисление определенных интегралов. Функции нескольких переменных.

    презентация [917,8 K], добавлен 17.03.2010

  • Нахождение частной производной первого порядка. Определение области определения функции. Расчет производной от функции, заданной неявно. Полный дифференциал функции двух переменных. Исследование функции на экстремум, ее наименьшее и наибольшее значения.

    контрольная работа [1,1 M], добавлен 12.11.2014

  • Основные свойства функций, для которых существуют пределы. Понятие бесконечно малых величин и их суммы. Предел алгебраической суммы, разности и произведения конечного числа функций. Предел частного двух функций. Нахождение предела сложной функции.

    презентация [83,4 K], добавлен 21.09.2013

  • Нахождение пределов функций. Определение значения производных данных функций в заданной точке. Проведение исследования функций с указанием области определения и точек разрыва, экстремумов и асимптот. Построение графиков функций по полученным данным.

    контрольная работа [157,0 K], добавлен 11.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.