Логарифм числа
Понятие логарифма как числа, применение которого позволяет упростить многие сложные операции арифметики. Основное логарифмическое тождество. Свойства десятичного и натурального логарифма. Расчет логарифма корня, который равен логарифму подкоренного числа.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 28.10.2013 |
Размер файла | 20,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Логарифм числа
Логарифмом положительного числа N по основанию (b > 0, b1) называется показатель степени x, в которую нужно возвести b, чтобы получить N.
Обозначение логарифма:
Эта запись равнозначна следующей: bx = N.
Примеры: log3 81 = 4, так как 34 = 81 ;
log1/3 27 = - 3, так как (1/3 ) -3 = 33 = 27.
Вышеприведенное определение логарифма можно записать в виде тождества:
Основные свойства логарифмов
логарифм арифметика тождество корень
1) log b = 1, так как b 1 = b.
2) log 1 = 0, так как b 0 = 1.
3) Логарифм произведения равен сумме логарифмов сомножителей:
log ( ab ) = log a + log b.
4) Логарифм частного равен разности логарифмов делимого и делителя:
log ( a / b ) = log a - log b.
5) Логарифм степени равен произведению показателя степени на логарифм её основания:
log ( b k ) = k · log b.
Следствием этого свойства является следующее: логарифм корня равен логарифму подкоренного числа, делённому на степень корня:
6) Если в основании логарифма находится степень, то величину, обратную показателю степени, можно вынести за знак логарифма:
Два последних свойства можно объединить в одно:
7) Формула модуля перехода (т.e. перехода от одного основания логарифма к другому основанию ):
В частном случае при N = a имеем:
Десятичным логарифмом называется логарифм по основанию 10. Он обозначается lg, т.е. log 10 N = lg N. Логарифмы чисел 10, 100, 1000,... pавны соответственно 1, 2, 3, …, т.е. имеют столько положительных единиц, сколько нулей стоит в логарифмируемом числе после единицы. Логарифмы чисел 0.1, 0.01, 0.001,...pавны соответственно -1, -2, -3, …, т.е. имеют столько отрицательных единиц, сколько нулей стоит в логарифмируемом числе перед единицей (считая и нуль целых). Логарифмы остальных чисел имеют дробную часть, называемую мантиссой. Целая часть логарифма называется характеристикой. Для практического применения десятичные логарифмы наиболее удобны.
Натуральным логарифмом называется логарифм по основанию е. Он обозначается ln, т.е. log e N = ln N. Число е является иррациональным, его приближённое значение 2.718281828. Оно является пределом, к которому стремится число (1 + 1 / n) n при неограниченном возрастании n (см. первый замечательный предел на странице "Пределы числовых последовательностей").
Как это ни покажется странным, натуральные логарифмы оказались очень удобными при проведении различного рода операций, связанных с анализом функций. Вычисление логарифмов по основанию е осуществляется гораздо быстрее, чем по любому другому основанию.
Размещено на Allbest.ru
Подобные документы
Понятие логарифма как числа, применение которого позволяет упростить многие сложные операции арифметики. Введение логарифмов математиками Дж. Непером и Иостом Бюрги. Логарифмические свойства и тождества. Различие таблиц натуральных и обычных лагорифмов.
презентация [370,0 K], добавлен 26.11.2012Общая терминология и история изобретения логарифма. Характеристики натурального и обычного логарифма, определение дробного числа и мантиссы. Таблицы и свойства натуральных логарифмов. Логарифмическая и экспоненциальная кривая, понятие функции логарифма.
реферат [211,2 K], добавлен 05.12.2011Логарифм как многозначная функция. Обозначение главного значения логарифма. Свойства логарифма на случай комплексного аргумента. Понятие обратных тригонометрических функций (арккосинуса, арктангенса, арккотангенса), практические примеры их вычисления.
презентация [171,6 K], добавлен 17.09.2013Исторические аналоги современных определений логарифма как средства вычислений. Интегральные методы XVII века, нахождение площади под гиперболой. Современное интегральное определение логарифма. Определение элементарных функций с помощью интеграла.
курсовая работа [255,2 K], добавлен 04.09.2014Уравнение, содержащее неизвестное под знаком логарифма или в его основании, называется логарифмическим уравнением. Свойства логарифмической функции, методы решения уравнений и неравенств. Использование свойств логарифма. Решение показательных уравнений.
курсовая работа [265,0 K], добавлен 12.10.2010Число как основное понятие математики. Натуральные числа. Простые числа Мерсенна, совершенные числа. Рациональные числа. Дробные числа. Дроби в Древнем Египте, Древнем Риме. Отрицательные числа. Комплексные, векторные, матричные, трансфинитные числа.
реферат [104,5 K], добавлен 12.03.2004Характерные особенности логарифмов, их свойства. Методика определения логарифма числа по основанию a. Основные свойства логарифмической функции. Множество всех действительных чисел R. Анализ функций возрастания и убывания на всей области определения.
презентация [796,3 K], добавлен 06.02.2012История открытия логарифмов. Определение логарифма. Натуральные, десятичные, двоичные логарифмы и их применение в теории информации и информатике. Логарифмические функции и их графики. Логарифмическая спираль. Риманова поверхность. Свойства функции.
презентация [316,0 K], добавлен 20.02.2011Определение числа e, вычисление его приближенного значения и его трансцендентность. Анализ формул числа е с помощью рядов и пределов функции. Проявление числа e в реальной жизни и его практическое применение. Применение числа e в математических задачах.
курсовая работа [352,9 K], добавлен 17.05.2021Логарифмическая функция, ее основные свойства и график. Простейшие логарифмические уравнения. Логарифмо-показательные уравнения. Переход к логарифмам одного основания с использованием формулы перехода от логарифма одного основания к логарифму другого.
курсовая работа [629,1 K], добавлен 26.11.2013