Основные теоремы дифференциального исчисления
Сущность и основные теоремы дифференциального исчисления, их главные отличия. Процесс построения графика. Описание теоремы Вейерштрасса и Лагранжа, их использование. Обобщенная формула конечных приращений. Раскрытие неопределенностей и правила Лопиталя.
Рубрика | Математика |
Вид | лекция |
Язык | русский |
Дата добавления | 29.09.2013 |
Размер файла | 41,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Теоремы дифференциального исчисления, как основа для правила Лопиталя и формулы Тейлора. Правило Лопиталя и методы раскрытия всех типов неопределенностей. Вывод формулы Тейлора и ее применение для нахождения эквивалентных функций и вычисления пределов.
курсовая работа [261,6 K], добавлен 05.09.2009Основные теоремы дифференциального исчисления: Ферма, Ролля, Коши, Лагранжа и их доказательство. Локальные экстремумы функции, исследование ее на выпуклость и вогнутость, понятие точки перегиба. Асимптоты и общая схема построения графика функции.
реферат [430,7 K], добавлен 12.06.2010Теорема Ролля и ее доказательство, структура и геометрический смысл. Сущность теоремы о среднем, принадлежащей Лагранжу, использование в ней результатов теоремы Ролля. Отражение и обобщение работы Лагранжа в теореме Коши, методика ее доказательства.
реферат [208,2 K], добавлен 15.08.2009Теорема Ферма: содержание, доказательство, геометрический смысл. Теорема Ролля: производная функции, отсутствие непрерывности Отсутствует и дифференцируемости. Доказательство теоремы Лагранжа, общий вид, геометрический смысл, содержание следствия.
презентация [199,4 K], добавлен 21.09.2013Локальные экстремумы функции. Теоремы дифференциального исчисления: Ферма, Ролля, Коши, Лагранжа. Достаточные условия экстремума функции. Исследование функций на выпуклость и вогнутость. Точка перегиба. Асимптоты графика функции. Схема построения графика.
курс лекций [445,7 K], добавлен 27.05.2010Содержание теоремы Ферма о ненулевых решениях уравнения вида xn+yn=zn в натуральных числах при значениях n>2. Доказательство теоремы Декартом, Эйлером, Уайлсом. Разработка основ дифференциального исчисления и теории вероятности - научные достижения Ферма.
реферат [13,2 K], добавлен 01.12.2010Основные теоремы и понятия дифференциального исчисления, связи между свойствами функции и её производных (или дифференциалов); применение математических методов в естествознании и технике. Решение уравнений и неравенств с помощью теорем Ролля и Лагранжа.
курсовая работа [609,9 K], добавлен 09.12.2011Биография немецкого математика А. Гурвица. Основные положения теоремы Ферма. Обзор систем "чисел", которые можно построить, исходя из действительных чисел, путем добавления рядя "мнимых единиц". Приложение теоремы Гурвица: теоремы Фробениуса и Лагранжа.
курсовая работа [220,5 K], добавлен 25.05.2010Доказательство теорем Силова о конечных группах, которые представляют собой неполный вариант обратной теоремы к теореме Лагранжа и для некоторых делителей порядка группы G гарантируют существование подгрупп такого порядка. Нахождение силовских р-подгрупп.
курсовая работа [161,3 K], добавлен 31.03.2011Закон распределения случайной величины дискретного типа (принимающей отдельные числовые значения). Предельные теоремы схемы Бернулли. Вычисление вероятности появления события по локальной теореме Муавра-Лапласа. Интегральная формула данной теоремы.
презентация [611,2 K], добавлен 17.08.2015Задания на установление заданных пределов без использования правила Лопиталя. Определение точек разрыва функции и построение ее графика. Правило вычисления производной, заданной неявно. Исследование функции методами дифференциального исчисления.
контрольная работа [570,8 K], добавлен 10.10.2011Оригинальный метод доказательства теоремы Ферма. Использование бинома Ньютона для решения диофантового уравнения. Решение теоремы Ферма при нечетных показателях степени n, при целых положительных и натуральных числах. Преобразование уравнения Ферма.
статья [16,4 K], добавлен 17.10.2009Выполнение доказательства теорем Пифагора, Ферма и гипотезы Биля методом параметрических уравнений в сочетании с методом замены переменных. Уравнение теоремы Ферма как частный вариант уравнения гипотезы Биля, а уравнение теоремы Ферма – теоремы Пифагора.
творческая работа [64,8 K], добавлен 20.05.2009Доказательство первой, второй и третей теоремы Силова. Описание групп порядка pq. Смежные классы по подгруппе и теорема Лагранжа. Классы сопряженных элементов. Нормализатор множества в группе. Теоремы о гомоморфизмах. Примеры силовских подгрупп.
курсовая работа [246,9 K], добавлен 21.04.2011Суть великой теоремы Ферма. Формирование диофантового уравнения. Доказательство вспомогательной теоремы (леммы). Особенности составления параметрического уравнения с параметрами. Решение великой теоремы Ферма в целых положительных (натуральных) числах.
научная работа [31,1 K], добавлен 18.01.2010Представление великой теоремы Ферма как диофантового уравнения. Использование для ее доказательства метода замены переменных. Невозможность решения теоремы в целых положительных числах. Необходимые условия и значения чисел для решения, анализ уравнений.
статья [35,2 K], добавлен 21.05.2009История создания теоремы. Краткая биографическая справка из жизни Пифагора Самосского. Основные формулировки теоремы. Доказательство Евклида, Хоукинса. Доказательство через: подобные треугольники, равнодополняемость. Практическое применение теоремы.
презентация [3,6 M], добавлен 21.10.2011Теоретические аспекты применения правил Лопиталя. Определение предела функции в точке. Понятия бесконечно большой и бесконечно малой функций. Рассмотрение содержания теорем о дифференцируемых функциях. Раскрытие неопределенностей по правилу Лопиталя.
курсовая работа [1,3 M], добавлен 30.12.2021Популярность и биография великого математика, тайны теоремы Пифагора "О равенстве квадрата гипотенузы прямоугольного треугольника сумме квадратов катетов", история теоремы. Различные способы доказательств теоремы Пифагора, области ее применения.
презентация [376,2 K], добавлен 28.02.2012Краткий биографический очерк жизненного пути Пифагора. История появления теоремы Пифагора, ее дальнейшее распространение в мире. Формулировка и доказательство теоремы с помощью различных методов. Возможности применения теоремы Пифагора к вычислениям.
презентация [309,4 K], добавлен 17.11.2011