Ранг матрицы
Определитель с элементами, стоящими на пересечении строк, и столбцов матрицы. Правило вычисления ранга матрицы. Перебор всех возможных миноров. Элементарные преобразования: умножение, прибавление и перестановка рядов. Метод "окаймляющих миноров".
Рубрика | Математика |
Вид | лекция |
Язык | русский |
Дата добавления | 29.09.2013 |
Размер файла | 33,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Лекция
Ранг матрицы
Определение 1
Определитель с элементами, стоящими на пересечении произвольных строк, и столбцов матрицы, называется минором -го порядка этой матрицы.
Замечание 1. Не путать с минором элемента!
Пример 1
матрица минор ранг
здесь - один из миноров 2-го порядка.
Сравнить их с нулем.
Сколько миноров второго порядка?
Сколько миноров третьего порядка? (четыре)
Есть ли минор четвертого порядка? (нет)
Каждый отдельный элемент матрицы является минором первого порядка.
Определение 2
Наивысший порядок отличных от нуля миноров матрицы называется рангом матрицы.
Обозначение: (3.1).
Таким образом, обозначение (3.1) означает, что среди всевозможных миноров матрицы имеется хотя бы один отличный от нуля минор, -го порядка, а все миноры -го и высших порядков равны нулю.
Определение 3
Каждый отличный от нуля минор, порядок которого совпадает с рангом матрицы, называется базисным минором.
Сколько может быть базисных миноров у матрицы? (несколько)
В матрице из примера 3.1 все миноры 3-го порядка равны нулю
(Проверить.)
но имеются отличные от нуля миноры 2-го порядка, значит, .
Правило вычисления ранга матрицы (метод «окаймляющих миноров»).
При вычислении ранга матрицы следует переходить от миноров меньших порядков к минорам больших порядков. Если уже найден минор k-го порядка D, отличный от нуля, то требуют вычисления лишь миноры (k+1)-го порядка, окаймляющие минор D: если все они равны нулю, то ранг матрицы равен k.
.
Матрица большого размера имеет много миноров различных порядков и нахождение ранга только на основании определения 3.2 (перебором всех возможных миноров) или даже методом «окаймляющих миноров» требует много времени. Эта задача существенно упрощается с помощью перехода от данной матрицы так называемыми элементарными преобразованиями к ступенчатой матрице:
Определение 4
Элементарными преобразованиями называются следующие преобразования:
1). Умножение ряда (строки или столбца) на число, не равное нулю.
2). Прибавление к одному ряду другого, умноженного на любое число, не равное нулю.
3). Перестановка двух рядов.
Замечание 2. Как правило, получается эквивалентная матрица неравная данной.
.
Определение 4
Матрица, у которой в каждой следующей строке, начиная со второй, первый отличный от нуля элемент стоит правее первого отличного от нуля элемента предыдущей строки, а все нулевые строки (состоящие только из нулей) стоят ниже ненулевых строк (строк, содержащих хотя бы один ненулевой элемент), называется ступенчатой.
Например: .
Пример 2
Базисным минором, к примеру, является минор:
.
Пример 3
С помощью элементарных преобразований привести матрицу к ступенчатому виду.
Теорема 3.1
Элементарные преобразования не изменяют ранга матрицы.
Теорема 3.2 (О ступенчатой матрице):
1). Каждая матрица элементарными преобразованиями строк приводится к ступенчатой матрице.
2). Ранг ступенчатой матрицы равен числу ненулевых строк.
Доказательство
Возьмем первый слева столбец, содержащий ненулевые элементы. Переставим строки матрицы так, чтобы один из ненулевых элементов этого столбца оказался в первой строке (если первый элемент взятого столбца был равен нулю).
С помощью преобразований строк можно получить новую матрицу, в которой все элементы под окажутся равными нулю. Чтобы получить нуль на месте элемента , достаточно умножить -ю строку матрицы (где стоит ) на число и прибавить к -ой строке (где стоит ). Действительно, на месте элемента получим
Обратим указанным способом в нуль все элементы под этим ненулевым элементом. Первая строка ступенчатой матрицы готова: все ненулевые элементы второй и нижних строк теперь стоят правее первого ненулевого элемента первой строки. Применим ту же операцию к матрице, начинающейся со второй строки и так далее. Так как строк - конечное число, то в результате получим ступенчатую матрицу.
2). Пусть в ступенчатой матрице имеется ненулевых строк. Тогда каждый минор -го и высшего порядка содержит нулевые строки (хотя бы одну) и потому равен нулю. Но имеется хотя бы один минор -го порядка отличный от нуля: наверняка треугольный минор не равен нулю, главную диагональ которого образуют первые ненулевые элементы всех ненулевых строк. Действительно, такой минор равен произведению элементов главной диагонали и поэтому не равен нулю. Значит .
Пример 3.3. Придумать ступенчатую матрицу шестого порядка, чтобы
.
.
Пример 3.4. Определить ранг матрицы:
методом «окаймляющих миноров»:
приведением матрицы к ступенчатому виду.
2)
Размещено на Allbest.ru
Подобные документы
Правила произведения матрицы и вектора, нахождения обратной матрицы и ее определителя. Элементарные преобразования матрицы: умножение на число, прибавление, перестановка и удаление строк, транспонирование. Решение системы уравнений методом Гаусса.
контрольная работа [462,6 K], добавлен 12.11.2010Изучение понятий, действий (сумма, разность, произведение), свойств квадратной матрицы. Определение и признаки ранга матрицы. Анализ методов окаймляющих миноров и преобразований. Расчет системы линейных уравнений согласно методам Крамера и матричному.
реферат [178,9 K], добавлен 01.02.2010Понятие матрицы, прямоугольная матрица размера m x n - совокупность mn чисел, расположенных в виде прямоугольной таблицы, содержащей m строк и n столбцов. Численная характеристика квадратной матрицы - ее определитель. Действия над матрицами, ранг матрицы.
реферат [87,2 K], добавлен 01.08.2009Общие определения, связанные с понятием матрицы. Действия над матрицами. Определители 2-го и 3-го порядков, порядка n, порядок их вычисления и характерные свойства. Обратные матрицы и их ранг. Понятие и этапы элементарного преобразования матрицы.
лекция [30,2 K], добавлен 14.12.2010Понятие матрицы, ее ранга, минора, использование при действиях с векторами и изучении систем линейных уравнений. Квадратная и прямоугольная матрица. Элементарные преобразования матрицы. Умножение матрицы на число. Класс диагональных матриц, определители.
реферат [102,8 K], добавлен 05.08.2009Линейные операции над матрицами. Умножение и вычисление произведения матриц. Приведение матрицы к ступенчатому виду и вычисление ранга матрицы. Вычисление обратной матрицы и определителя матрицы, а также решение систем линейных уравнений методом Гаусса.
учебное пособие [658,4 K], добавлен 26.01.2009Вид в матричной форме, определитель матрицы, алгебраического дополнения и всех элементов матрицы, транспоная матрица. Метод Крамера, правило Крамера — способ решения квадратных систем линейных алгебраических уравнений с определителем основной матрицы.
задача [93,5 K], добавлен 08.11.2010Число, характеризующее квадратную матрицу. Вычисление определителя первого и второго порядков матрицы. Использование правила треугольников. Алгебраическое дополнение некоторого элемента определителя. Перестановка двух строк или столбцов определителя.
презентация [81,5 K], добавлен 21.09.2013Понятие матрицы и ее основные элементы. Пример нахождения ее ранга путем приведения к ступенчатому виду. Описание действий над матрицами. Разбор умножения их на примере. Особенности алгебраического дополнения. Алгоритм определения обратной матрицы.
презентация [617,0 K], добавлен 15.09.2014Понятие матрицы и линейные действия над ними. Свойства операции сложения матриц. Определители второго и третьего порядков. Применение правила Саррюса. Основные методы решения определителей. Элементарные преобразования матрицы. Свойства обратной матрицы.
учебное пособие [223,0 K], добавлен 04.03.2010