Явный вид решения смешанной задачи в анизотропном полупространстве с ярко выраженной вертикальной проницаемостью для уравнения Баренблатта–Желтова–Кочиной

Поиск оптимального разрешения смешанной задачи в анизотропном полупространстве с ярко выраженной вертикальной проницаемостью сведением рассматриваемой задачи фильтрации к исследованию абстрактной начально-краевой задачи в банаховом пространстве.

Рубрика Математика
Вид статья
Язык русский
Дата добавления 31.05.2013
Размер файла 486,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Метод разделения переменных в задаче Штурма-Лиувилля. Единственность решения смешанной краевой задачи, реализуемая методом априорных оценок. Постановка и решение смешанной краевой задачи для нелокального волнового уравнения с дробной производной.

    курсовая работа [1003,8 K], добавлен 29.11.2014

  • Банаховы функциональные пространства. Постановка краевой задачи и исследование ее однозначной разрешимости и отрицательности функции Грина. Признаки существования решения краевой задачи для нелинейного функционально-дифференциального уравнения.

    курсовая работа [440,4 K], добавлен 27.05.2015

  • Последовательность решения линейной краевой задачи. Особенности метода прогонки. Алгоритм метода конечных разностей: построение сетки в заданной области, замена дифференциального оператора. Решение СЛАУ методом Гаусса, конечно-разностные уравнения.

    контрольная работа [366,5 K], добавлен 28.07.2013

  • Сущность методов сведения краевой задачи к задаче Коши и алгоритмы их реализации на ПЭВМ. Применение метода стрельбы (пристрелки) для линейной краевой задачи, определение погрешности вычислений. Решение уравнения сшивания для нелинейной краевой задачи.

    методичка [335,0 K], добавлен 02.03.2010

  • Нелокальная краевая задача, которая является некоторым аналогом задачи Бицадзе-Самарского. Единственность ее решения доказывается принципом максимума, а существование решения доказывается сведением задачи к эквивалентному ей интегральному уравнению.

    задача [54,3 K], добавлен 13.05.2008

  • Применение метода дискретной регуляризации Тихонова А.Н. для нахождения решения обратной задачи для однородного бигармонического уравнения в круге. Сведение дифференциальной задачи к интегральному уравнению; корректно и некорректно поставленные задачи.

    курсовая работа [280,2 K], добавлен 20.10.2011

  • Описание метода сведения краевой задачи к задаче Коши. Решение системы из двух уравнений с четырьмя неизвестными. Метод Рунге-Кутта. Расчет максимальной погрешности и выполнение проверки точности. Метод конечных разностей. Описание полученных результатов.

    курсовая работа [245,2 K], добавлен 10.07.2012

  • Структура текстовой задачи. Условия и требования задач и отношения между ними. Методы и способы решения задач. Основные этапы решения задач. Поиск и составление плана решения. Осуществление плана решения. Моделирование в процессе решения задачи.

    презентация [247,7 K], добавлен 20.02.2015

  • Изучение численно-аналитического метода решения краевых задач математической физики на примере неоднородной задачи Дирихле для уравнения Лапласа. Численная реализация вычислительного метода и вычислительного эксперимента, особенности их оформления.

    практическая работа [332,7 K], добавлен 28.01.2014

  • Обзор краевых задач для уравнения смешанного эллептико-гиперболического типа. Доказательство существования единственного решения краевой задачи для одного уравнения гиперболического типа со специальными условиями сопряжения на линии изменения типа.

    контрольная работа [253,5 K], добавлен 23.04.2014

  • Порядок и процедура поиска решения дифференциального уравнения. Теорема существования и единственности решения задачи Коши. Задачи, приводящие к дифференциальным уравнениям. Дифференциальные уравнения первого порядка, с разделяющими переменными.

    лекция [744,1 K], добавлен 24.11.2010

  • Решение задачи Коши для дифференциального уравнения. Погрешность приближенных решений. Функция, реализующая явный метод Эйлера. Вычисление погрешности по правилу Рунге. Решение дифференциальных уравнений второго порядка. Условие устойчивости для матрицы.

    контрольная работа [177,1 K], добавлен 13.06.2012

  • Понятие, закономерности формирования и решения дифференциальных уравнений. Теорема о существовании и единственности решения задачи Коши. Существующие подходы и методы решения данной задачи, оценка погрешности полученных значений. Листинг программы.

    курсовая работа [120,8 K], добавлен 27.01.2014

  • Математическое моделирование и особенности задачи распределения. Обоснование и выбор метода решения. Ручное решение задачи (венгерский метод), а также с использованием компьютера. Формулировка полученного результата в сопоставлении с условием задачи.

    курсовая работа [383,9 K], добавлен 26.05.2010

  • Решение первой задачи, уравнения Пуассона, функция Грина. Краевые задачи для уравнения Лапласа. Постановка краевых задач. Функции Грина для задачи Дирихле: трехмерный и двумерный случай. Решение задачи Неймана с помощью функции Грина, реализация на ЭВМ.

    курсовая работа [132,2 K], добавлен 25.11.2011

  • Исследование задачи Дирихле для вырождающегося уравнения смешанного типа в прямоугольной области методами спектрального анализа. Обоснование корректности постановки нелокальных начально-граничных задач различных вырождающихся дифференциальных уравнений.

    курсовая работа [135,1 K], добавлен 06.05.2011

  • Метод регуляризующего множителя для решения задачи Гильберта для аналитических функций в случае произвольной односвязной области. Постановка краевой задачи типа Гильберта в классе бианалитических функций, а также решение конкретных примеров задач.

    дипломная работа [4,0 M], добавлен 20.05.2013

  • О происхождении задачи удвоения куба (одной из пяти знаменитых задач древности). Первая известная попытка решения задачи, решение Архита Тарентского. Решение задачи в Древней Греции после Архита. Решения с помощью конических сечений Менехма и Эратосфена.

    реферат [630,3 K], добавлен 13.04.2014

  • Постановка задачи коммивояжера и основные алгоритмы решения. Маршруты и пути. Понятия транспортной сети. Понятие увеличивающая дуга, цепь, разрез. Алгоритм Флойда-Уоршелл. Решение задачи аналитическим методом. Создание приложения для решения задачи.

    курсовая работа [541,3 K], добавлен 08.10.2015

  • Физические задачи, приводящие к уравнению теплопроводности. Краевые задачи, связанные с конфигурацией тела и условиями теплообмена. Теория разностных методов решения уравнения теплопроводности, устойчивость и сходимость соответствующих разностных схем.

    дипломная работа [460,8 K], добавлен 04.05.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.