Использование диффузной инициализации при оценивании параметров сепарабельной регрессии

Рассмотрение задачи оценки параметров нелинейной регрессии при отсутствии априорной информации о линейно входящих параметрах. Проблема обеспечения оценивания параметров сходимости алгоритма за приемлемое количество итераций в нелинейных задачах.

Рубрика Математика
Вид статья
Язык русский
Дата добавления 25.02.2013
Размер файла 149,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Алгоритм построения ранговой оценки неизвестных параметров регрессии. Моделирование регрессионных зависимостей с погрешностями, имеющими распределения с "тяжёлыми" хвостами. Вычисление асимптотической относительной эффективности рангового метода.

    курсовая работа [1,2 M], добавлен 05.01.2015

  • Построение уравнения регрессии. Оценка параметров линейной парной регрессии. F-критерий Фишера и t-критерий Стьюдента. Точечный и интервальный прогноз по уравнению линейной регрессии. Расчет и оценка ошибки прогноза и его доверительного интервала.

    презентация [387,8 K], добавлен 25.05.2015

  • Знакомство с уравнениями линейной регрессии, рассмотрение распространенных способов решения. Общая характеристика метода наименьших квадратов. Особенности оценки статистической значимости парной линейной регрессии. Анализ транспонированной матрицы.

    контрольная работа [380,9 K], добавлен 05.04.2015

  • Обработка и анализ статистической информации. Выборочная теория; интервальные оценки и графическое представление параметров распределения. Точечные оценки характеристик положения и мер изменчивости. Корреляционная зависимость; уравнение регрессии.

    курсовая работа [1023,9 K], добавлен 21.03.2015

  • Предпосылки корреляционного анализа - математико-статистического метода выявления взаимозависимости компонентов многомерной случайной величины и оценки их связи. Точечные оценки параметров двумерного распределения. Аппроксимация уравнений регрессии.

    контрольная работа [648,3 K], добавлен 03.04.2011

  • Методика и основные этапы расчета параметров линейного уравнения парной регрессии с помощью программы Excel. Анализ качества построенной модели, с использованием коэффициента парной корреляции, коэффициента детерминации и средней ошибки аппроксимации.

    лабораторная работа [22,3 K], добавлен 15.04.2014

  • Cтатистический анализ зависимости давления. Построение диаграммы рассеивания и корреляционной таблицы. Вычисление параметров для уравнений линейной и параболической регрессии, выборочных параметров. Проверка гипотезы о нормальном распределении признака.

    курсовая работа [613,3 K], добавлен 24.10.2012

  • Оптимальная настройка параметров "алгоритма отжига" при решении задачи коммивояжера. Влияние начальной температуры, числа поворотов при одной температуре и коэффициента N на результат. Сравнение и определение лучшей функции для расчётов задачи.

    контрольная работа [329,9 K], добавлен 20.11.2011

  • Значения коэффициента регрессии (b) и сводного члена уравнения регрессии (а). Определение стандартной ошибки предсказания являющейся мерой качества зависимости величин Y и х с помощью уравнения линейной регрессии. Значимость коэффициента регрессии.

    задача [133,0 K], добавлен 21.12.2008

  • Оценивание параметров закона распределения случайной величины. Точечная и интервальная оценки параметров распределения. Проверка статистической гипотезы о виде закона распределения, нахождение параметров системы. График оценки плотности вероятности.

    курсовая работа [570,4 K], добавлен 28.09.2014

  • Задача исследования устойчивости нелинейной динамической системы. Аппроксимации функций с использованием обобщений полиномов Бернштейна. Анализ скорости сходимости и эффективности итерационной формулы, сравнение с классическими численными методами.

    дипломная работа [1002,2 K], добавлен 23.06.2011

  • Исследование сущности и сфер применения метода итераций. Нелинейные уравнения. Разработка вычислительный алгоритм метода итераций. Геометрический смысл. Составление программы решения систем нелинейных уравнений методом итераций в среде Turbo Pascal.

    реферат [183,7 K], добавлен 11.04.2014

  • Основные задачи регрессионного анализа в математической статистике. Вычисление дисперсии параметров уравнения регрессии и дисперсии прогнозирования эндогенной переменной. Установление зависимости между переменными. Применение метода наименьших квадратов.

    презентация [100,3 K], добавлен 16.12.2014

  • Сравнение методов простой итерации и Ньютона для решения систем нелинейных уравнений по числу итераций, времени сходимости в зависимости от выбора начального приближения к решению и допустимой ошибки. Описание программного обеспечения и тестовых задач.

    курсовая работа [3,1 M], добавлен 26.02.2011

  • Составление математической модели для предприятия, характеризующей выручку предприятия "АВС" в зависимости от капиталовложений (млн. руб.) за последние 10 лет. Расчет поля корреляции, параметров линейной регрессии. Сводная таблица расчетов и вычислений.

    курсовая работа [862,4 K], добавлен 06.05.2009

  • Сортировка размера пенсии по возрастанию прожиточного минимума. Параметры уравнений парных регрессий. Значения параметров логарифмической регрессии. Оценка гетероскедастичности линейного уравнения с помощью проведения теста ранговой корреляции Спирмена.

    контрольная работа [178,0 K], добавлен 23.11.2013

  • Статистическое описание и выборочные характеристики двумерного случайного вектора. Оценка параметров линейной регрессии, полученных по методу наименьших квадратов. Проверка гипотезы о равенстве средних нормальных совокупностей при неизвестных дисперсиях.

    контрольная работа [242,1 K], добавлен 05.11.2011

  • Определение частных производных первого и второго порядков заданной функции, эластичности спроса, основываясь на свойствах функции спроса. Выравнивание данных по прямой методом наименьших квадратов. Расчет параметров уравнения линейной парной регрессии.

    контрольная работа [99,4 K], добавлен 22.07.2009

  • Цели линейной модели множественной регрессии (прогноз, имитация, сценарий развития, управление). Анализ эконометрической сущности изучаемого явления на априорном этапе. Параметризация и сбор необходимой статистической информации, значимость коэффициентов.

    контрольная работа [68,7 K], добавлен 21.09.2009

  • Преимущества и недостатки параметрических методов оценки. Процедура Роббинса-Монро, алгоритмы Литвакова и Кестена. Исследование стохастических аппроксимаций непараметрического типа. Непараметрическая оценка плотности вероятности и кривой регрессии.

    реферат [470,6 K], добавлен 22.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.