Критерии теории игр

Решение игры с природой по критериям Гурвица, Лапласа, Сэвиджа и Вальда. Особенности построения матрицы выигрышей, потерь и риска. Определение терминов "максиминный" и "минимаксный" критерий. Обоснование выбора оптимальной стратегии решения задачи.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 15.01.2013
Размер файла 70,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Решить игру с природой по критерию Гурвица, б=0,4

Решение

а) если А - матрица выигрышей

б) если А - матрица потерь

а) если А - матрица выигрышей, то оптимальной является 3 стратегия

б) если А - матрица потерь, то оптимальной является 1 стратегия

Решить игру с природой по критерию Лапласа

игра матрица выигрыш риск

Решение

Основывается на принципе недостаточного обоснования

а) если А - матрица выигрышей

б) если А - матрица потерь

а) если А - матрица выигрышей, то оптимальной является 4 стратегия

б) если А - матрица потерь, то оптимальной является 1 стратегия

Решить игру с природой по критерию Сэвиджа

Решение

Строится матрица R - матрица риска

Элементы находятся по формуле

а) если А - матрица выигрышей

Оптимальной является 2 и 3 стратегии

б) если А - матрица потерь

Оптимальной является 1 стратегия

Решить игру с природой по критерию Вальда.

Решение

Критерий Вальда (максиминный, минимаксный)

а) если А - матрица выигрышей, то выбирается

Оптимальной является 3 стратегия

б) если А - матрица потерь, то выбирается

Оптимальной является 1 стратегия

Размещено на Allbest.ru


Подобные документы

  • Составление платежной матрицы, поиск нижней и верхней чисты цены игры, максиминной и минимаксной стратегии игроков. Упрощение платежной матрицы. Решение матричной игры с помощью сведения к задаче линейного программирования и надстройки "Поиск решения".

    контрольная работа [1010,3 K], добавлен 10.11.2014

  • Пьер-Симон Лаплас - выдающийся французский математик, физик и астроном, один из создателей теории вероятностей. Уравнение Лапласа в двумерном пространстве. Способы трехмерного уравнения Лапласа. Особенности решения задачи Дирихле в круге методом Фурье.

    курсовая работа [271,8 K], добавлен 14.06.2011

  • Основные определения теории биматричных игр. Пример биматричной игры "Студент-Преподаватель". Смешанные стратегии в биматричных играх. Поиск "равновесной ситуации". 2x2 биматричные игры и формулы для случая, когда у каждого игрока имеется две стратегии.

    реферат [84,2 K], добавлен 13.02.2011

  • Понятие, типы и алгебра матриц. Определители квадратной матрицы и их свойства, теоремы Лапласа и аннулирования. Понятие обратной матрицы и ее единственность, алгоритм построения и свойства. Определение единичной матрицы только для квадратных матриц.

    реферат [296,6 K], добавлен 12.06.2010

  • Изучение численно-аналитического метода решения краевых задач математической физики на примере неоднородной задачи Дирихле для уравнения Лапласа. Численная реализация вычислительного метода и вычислительного эксперимента, особенности их оформления.

    практическая работа [332,7 K], добавлен 28.01.2014

  • Понятие и типы матриц. Определители (детерминанты) квадратной матрицы и их свойства. Алгебраические действия над матрицами. Теоремы Лапласа и аннулирования. Понятие и свойства обратной матрицы, алгоритм ее построения. Единственность обратной матрицы.

    курс лекций [336,5 K], добавлен 27.05.2010

  • Решение системы линейных уравнений по правилу Крамера и с помощью обратной матрицы. Нахождение ранга матрицы. Вычисление определителя с помощью теоремы Лапласа. Исследование на совместимость системы уравнений, нахождение общего решения методом Гауса.

    контрольная работа [97,3 K], добавлен 24.05.2009

  • Задача на определение вероятности попадания при одном выстреле первым орудием, при условии, что для второго орудия эта вероятность равна 0,75. Интегральная формула Лапласа. Решение задачи на определение математического ожидания случайной величины.

    контрольная работа [34,2 K], добавлен 12.01.2010

  • Особенности решения обыкновенного линейного неоднородного дифференциального уравнения второго порядка с заданными граничными условиями методом конечной разности. Составление трехдиагональной матрицы. Реализация решения в программе Microsoft Office Excel.

    курсовая работа [1,4 M], добавлен 23.12.2013

  • Поиск собственных чисел и построение фундаментальной системы решений. Исследование зависимости жордановой формы матрицы А от свойств матрицы системы. Построение фундаментальной матрицы решений методом Эйлера, решение задачи Коши и построение графиков.

    курсовая работа [354,7 K], добавлен 14.10.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.