Как решают нестандартные задачи

Подборка задач олимпиадного и исследовательского типов, которые сгруппированы по классам. Доказательство от противного. Описание метода крайнего. Уход на бесконечность и малые шевеления. Принцип Дирихле, алгоритм Евклида, индукция. Делимость и остатки.

Рубрика Математика
Вид книга
Язык русский
Дата добавления 10.01.2013
Размер файла 459,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.


Подобные документы

  • Формулировка и доказательство теоремы о простых числах в арифметической прогрессии (теорема Дирихле). Определение и основные свойства характеров. Суммы характеров и соотношение ортогональности. Характеры, L-функция Дирихле. Доказательство основных лемм.

    курсовая работа [214,2 K], добавлен 12.08.2009

  • Изучение численно-аналитического метода решения краевых задач математической физики на примере неоднородной задачи Дирихле для уравнения Лапласа. Численная реализация вычислительного метода и вычислительного эксперимента, особенности их оформления.

    практическая работа [332,7 K], добавлен 28.01.2014

  • Простейшая разностная схема для задачи Дирихле: построение, аппроксимация и устойчивость. Описания метода установления. Анализ алгоритмов, реализующих метод установления: решение в виде конечного ряда Фурье, схема установления и переменных направлений.

    курсовая работа [323,4 K], добавлен 25.11.2011

  • Описание сущности функции, которая была введена немецким математиком П.В. Дирихле как пример функции, свободной от аналитического задания значения. Характеристика и описание ряда ее свойств и области определения методами математического анализа.

    курсовая работа [44,8 K], добавлен 23.11.2011

  • Делимость в кольце чисел гаусса. Обратимые и союзные элементы. Деление с остатком. Алгоритм евклида. Основная теорема арифметики. Простые числа гаусса. Применение чисел гаусса.

    дипломная работа [209,2 K], добавлен 08.08.2007

  • Характеры и L-функции Дирихле, функциональное уравнение. Аналитическое продолжение L-функции Дирихле на комплексную плоскость; тривиальные и нетривиальные нули. Теорема Вейерштрасса о разложении в произведение целых функций. Обобщенная гипотеза Римана.

    реферат [573,1 K], добавлен 15.06.2011

  • Расширенный алгоритм Евклида, его использование для нахождения наибольшего общего делителя натуральных чисел посредством остатков от деления. Математическая проблема календаря. Евклидовы кольца - аналоги чисел Фибоначчи в кольце многочленов, их свойства.

    реферат [571,1 K], добавлен 25.09.2009

  • Особенность метода Остроградского. Процесс вычисления производных и нахождения интегралов различных функций. Алгоритм Евклида. Интегрирование биноминальных дифференциалов. Тригонометрические и гиперболические подстановки. Основные виды рациональностей.

    курсовая работа [916,8 K], добавлен 06.11.2014

  • Форма для ввода целевой функции и ограничений. Характеристика симплекс-метода. Процесс решения задачи линейного программирования. Математическое описание алгоритма симплекс-метода. Решение задачи ручным способом. Описание схемы алгоритма программы.

    контрольная работа [66,3 K], добавлен 06.04.2012

  • Предмет вычислительной техники - задачи, которые умеют решать машины. Измерение сложности задачи. Алгоритм сортировки слиянием. Полиномиальные и не полиномиальные задачи. Понятие недетерменированного алгоритма. Графическое представление классификации.

    презентация [277,7 K], добавлен 22.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.