Бесконечные произведения
Основные понятия бесконечных произведений, их свойства. Критерий Коши сходимости бесконечных произведений. Бесконечные произведения с действительными сомножителями. Связь между сходимостью бесконечных произведений и рядов. Применение дзета-функции Римана.
Рубрика | Математика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 30.11.2012 |
Размер файла | 554,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Свойства дзета-функции Римана для действительного аргумента. Дзета-функцию как функция мнимого аргумента. Дзета-функция Римана широко применяется в математическом анализе, в теории чисел, в изучении распределения простых чисел в натуральном ряду.
курсовая работа [263,2 K], добавлен 29.05.2006Рассмотрение особенностей сравнения рядов. Характеристика признаков сходимости Даламбера. Критерий Коши как ряд утверждений в математическом анализе. Анализ геометрической интерпретации интегрального признака. Способы определения сумы числового ряда.
контрольная работа [214,6 K], добавлен 01.03.2013Биография Исаака Ньютона, его основные исследования и достижения. Описание порядка нахождения корня уравнения в рукописи "Об анализе уравнениями бесконечных рядов". Методы касательных, линейной аппроксимации и половинного деления, условие сходимости.
реферат [1,6 M], добавлен 29.05.2009Использование теоретико-числового и алгебраического метода доказательства, с наглядной геометрической верификацией, который был изобретен П. Ферма. Верификация метода бесконечных (неопределенных) спусков, который применяется для доказательства теоремы.
научная работа [796,8 K], добавлен 11.01.2008Теорема о представлении дзета-функции Дедекинда произведением L-рядов Дирихле, ее доказательство в виде произведения L-функций в разветвленном и неразветвленном случаях. Приложение теоремы: выведение функционального уравнения дзета-функции Дедекинда.
курсовая работа [65,6 K], добавлен 15.06.2011Дзета-функція Римана та її застосування в математичному аналізі. Оцінка поводження дзета-функції в околиці одиниці. Теорія рядів Фур'є. Абсолютна збіжність інтеграла. Функціональне рівняння дзета-функції. Властивості функції в речовинній області.
курсовая работа [329,1 K], добавлен 28.12.2010Свойства примитивных конечных разрешимых произведений N-разложимых групп. Условия факторизуемости проекторов конечных разрешимых произведений N-разложимых групп для случая. Порядок определения приложений полученных результатов для классических формаций.
дипломная работа [239,8 K], добавлен 14.12.2009Уравнение прямой линии на плоскости, условия перпендикулярности плоскостей. Вычисления для векторов и их значение, нахождение скалярных произведений, обратная матрица к квадратной матрице и вычисление определителя, бесконечные системы и их признаки.
тест [526,3 K], добавлен 08.03.2012Изучение понятия числового ряда и его суммы. Особенности сходящихся и расходящихся рядов. Число e, как сумма ряда. Критерий Коши сходимости ряда. Алгебраические операции и сходимость. Ряды с неотрицательными членами. Интегральный признак Коши-Маклорена.
методичка [514,1 K], добавлен 26.06.2010Описание признака сходимости числовых рядов Даламбера, решение задач на исследование сходимости. Формулировка радикального признака сходимости Коши знакоположительного ряда в предельной форме. Доказательство знакочередующихся и знакопеременных рядов.
реферат [190,9 K], добавлен 06.12.2010Теория множеств - одна из областей математики. Понятие, обозначение, основные элементы конечных и бесконечных множеств - совокупности или набора определенных и различимых между собой объектов, мыслимых как единое целое. Пустое и универсальное множество.
реферат [126,6 K], добавлен 14.12.2011Использование признаков Коши и Лейбница для исследования абсолютной и условной сходимости рядов. Применение теории вероятности для изучения закономерности случайных явлений. Основные действия над комплексными числами. Решение задач симплексным методом.
контрольная работа [94,6 K], добавлен 04.02.2012Векторы в трехмерном пространстве. Линейные операции над векторами. Общее понятие про скалярные величины. Проекции векторов, их свойства. Коммутативность скалярного произведения, неравенство Коши-Буняковского. Примеры скалярного произведения векторов.
контрольная работа [605,8 K], добавлен 06.05.2012Понятие о голоморфном решении задачи Коши. Теорема Коши о существовании и единственности голоморфного решения задачи Коши. Решение задачи Коши для линейного уравнения второго порядка при помощи степенных рядов. Интегрирование дифференциальных уравнений.
курсовая работа [810,5 K], добавлен 24.11.2013Предел для функции действительного аргумента и для функции комплексного переменного. Формулировка необходимого условия дифференцируемости функции комплексного переменного (условие Коши-Римана). Понятия и примеры правильных и особых точек функции.
презентация [74,9 K], добавлен 17.09.2013Формации как классы групп, замкнутые относительно фактор-групп и подпрямых произведений, методика их произведения. Операции на классах групп, приводящие к формациям. Виды простейших свойств локальной формации всех групп с нильпотентным компонентом.
курсовая работа [461,6 K], добавлен 20.09.2009Область сходимости степенного ряда. Нахождение пределов, вычисление определенных интегралов. Применение степенных рядов в приближенных значениях. Изучение особенностей решения дифференциальных уравнений. Достаточное условие разложимости функции в ряд.
курсовая работа [1,3 M], добавлен 21.05.2019Ознакомление с теоремами теории аналитических функций. Определение и основные свойства индекса функции. Постановка и методы решения однородной и неоднородной задач Римана для односвязной и многосвязной областей. Принципы нахождения функции сдвига.
курсовая работа [485,6 K], добавлен 20.12.2011Решение неравенств и определение области сходимости рядов по признаку Даламбера и теореме Лейбница для знакопеременных рядов. Условия и пределы сходимости ряда. Исследование границ интервала. Проверка условия Лейбница при знакочередующемся ряде.
контрольная работа [127,2 K], добавлен 07.09.2010Слабые асимптотики произведения функций Хевисайда. Решение задачи Коши методом прямого интегрирования. Оценка задачи со ступенчатой функцией в качестве начального условия. Предел на бесконечности, получаемый при неограниченном уменьшении малого параметра.
курсовая работа [1,9 M], добавлен 23.09.2016