Обработка результатов прямых измерений

Особенности способов обработки результатов прямых и косвенных измерений. Рассмотрение методов уменьшения влияния случайных ошибок. Общая черта измерений как невозможность получения истинного значения измеряемой величины. Значения критерия Стьюдента.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 17.11.2012
Размер файла 40,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

прямой косвенный величина измерение

Измерением какой-либо величины называется операция, в результате которой мы узнаем, во сколько раз измеряемая величина больше (или меньше) соответствующей величины, принятой за эталон (единицу измерения). Все измерения можно разбить на два типа: прямые и косвенные.

Прямые - это такие измерения, при которых измеряется непосредственно интересующая нас физическая величина (масса, длина, интервалы времени, изменение температуры и т.д.).

Косвенные- это такие измерения, при которых интересующая нас величина определяется (вычисляется) из результатов прямых измерений других величин, связанных с ней определенной функциональной зависимостью. Например, определение скорости равномерного движения по измерениям пройденного пути промежутка времени, измерение плотности тела по измерениям массы и объема тела и т.д.

Общая черта измерений - невозможность получения истинного значения измеряемой величины, результат измерения всегда содержит какую-то ошибку (погрешность). Объясняется это как принципиально ограниченной точностью измерения, так и природой самих измеряемых объектов. Поэтому, чтобы указать, насколько полученный результат близок к истинному значению, вместе с полученным результатом указывают ошибку измерения.

Обработка результатов прямых измерений

Для уменьшения влияния случайных ошибок необходимо произвести измерение данной величины несколько раз. Предположим, что мы измеряем некоторую величину x. В результате проведенных измерений мы получили значений величины:

x1, x2, x3, ... xn. (2)

Этот ряд значений величины x получил название выборки. Имея такую выборку, мы можем дать оценку результата измерений. Величину, которая будет являться такой оценкой, мы обозначим . Но так как это значение оценки результатов измерений не будет представлять собой истинного значения измеряемой величины, необходимо оценить его ошибку. Предположим, что мы сумеем определить оценку ошибки Дx . В таком случае мы можем записать результат измерений в виде

µ = ± Дx (3)

Так как оценочные значения результата измерений и ошибки Дx не являются точными, запись (3) результата измерений должна сопровождаться указанием его надежности P. Под надежностью или доверительной вероятностью понимают вероятность того, что истинное значение измеряемой величины заключено в интервале, указанном записью (3). Сам этот интервал называется доверительным интервалом.

Например, измеряя длину некоторого отрезка, окончательный результат мы записали в виде

l = (8.34 ± 0.02) мм, (P = 0.95)

Это означает, что из 100 шансов - 95 за то, что истинное значение длины отрезка заключается в интервале от 8.32 до 8.36 мм .

Таким образом, задача заключается в том, чтобы, имея выборку (2), найти оценку результата измерений , его ошибку Дx и надежность P.

Эта задача может быть решена с помощью теории вероятностей и математической статистики.

В большинстве случаев случайные ошибки подчиняются нормальному закону распределения, установленного Гауссом. Нормальный закон распределения ошибок выражается формулой

(4)

где Дx - отклонение от величины истинного значения;

у - истинная среднеквадратичная ошибка;

у 2- дисперсия, величина которой характеризует разброс случайных величин.

Как видно из (4) функция имеет максимальное значение при x = 0 , кроме того, она является четной.

На рис.16 показан график этой функции. Смысл функции (4) заключается в том, что площадь фигуры, заключенной между кривой, осью Дx и двумя ординатами из точек Дx1 и Дx2 (заштрихованная площадь на рис.16) численно равна вероятности, с которой любой отсчет попадет в интервал (Дx1,Дx2) .

Рис.16

Поскольку кривая распределена симметрично относительно оси ординат, можно утверждать, что равные по величине, но противоположные по знаку ошибки равновероятны. А это дает возможность в качестве оценки результатов измерений взять среднее значение всех элементов выборки (2)

(5)

где - n число измерений.

Итак, если в одних и тех же условиях проделано n измерений, то наиболее вероятным значением измеряемой величины будет ее среднее значение (арифметическое). Величина стремится к истинному значению м измеряемой величины при n > ?.

Средней квадратичной ошибкой отдельного результата измерения называется величина (6)

Она характеризует ошибку каждого отдельного измерения. При n > ? S стремится к постоянному пределу у

у = lim S. (7)

n > ?

С увеличением у увеличивается разброс отсчетов, т.е. становится ниже точность измерений.

Среднеквадратичной ошибкой среднего арифметического называется величина(8)

Это фундаментальный закон возрастания точности при росте числа измерений.

Ошибка характеризует точность, с которой получено среднее значение измеренной величины Результат записывается в виде:

, (9)

Эта методика расчета ошибок дает хорошие результаты (с надежностью 0.68) только в том случае, когда одна и та же величина измерялась не менее 30 - 50 раз.

В 1908 году Стьюдент показал, что статистических подход справедлив и при малом числе измерений. Распределение Стьюдента при числе измерений n > ? переходит в распределение Гаусса, а при малом числе отличается от него.

Для расчета абсолютной ошибки при малом количестве измерений вводится специальный коэффициент, зависящий от надежности P и числа измерений n, называемый коэффициентом

Стьюдента t.

Опуская теоретические обоснования его введения, заметим, что

Дx = · t. (10)

где Дx - абсолютная ошибка для данной доверительной вероятности;

- Размещено на http://www.allbest.ru/

среднеквадратичная ошибка среднего арифметического.

Коэффициенты Стьюдента приведены в таблице.

Из сказанного следует:

Величина среднеквадратичной ошибки позволяет вычислить вероятность попадания истинного значения измеряемой величины в любой интервал вблизи среднего арифметического.

При n > ? > 0, т.е. интервал, в котором с заданной вероятностью находится истинное значение м, стремится к нулю с увеличением числа измерений. Казалось бы, увеличивая n, можно получить результат с любой степенью точности. Однако точность существенно увеличивается лишь до тех пор, пока случайная ошибка не станет сравнимой с систематической. Дальнейшее увеличение числа измерений нецелесообразно, т.к. конечная точность результата будет зависеть только от систематической ошибки. Зная величину систематической ошибки, нетрудно задаться допустимой величиной случайной ошибки, взяв ее, например, равной 10% от систематической. Задавая для выбранного таким образом доверительного интервала определенное значение P (например, P = 0.95), нетрудно нейти необходимое число измерений, гарантирующее малое влияние случайной ошибки на точность результата.

Для этого удобнее воспользоваться таблицей коэффициентов Стьюдента, в которой интервалы заданы в долях величины у, являющейся мерой точности данного опыта по отношению к случайным ошибкам.

При обработке результатов прямых измерений предлагается следующий порядок операций:

Результат каждого измерения запишите в таблицу.

Вычислите среднее значение из n измерений

= Размещено на http://www.allbest.ru/

У x i / n.

Найдите погрешность отдельного измерения

.

Вычислите квадраты погрешностей отдельных измерений

(Дx 1)2, (Дx 2)2, ... , (Дx n)2.

Определите среднеквадратичную ошибку среднего арифметического

Задайте значение надежности (обычно берут P = 0.95).

Определите коэффициент Стьюдента t для заданной надежности P и числа произведенных измерений n.

Найдите доверительный интервал (погрешность измерения)

Дx = · t.

Если величина погрешности результата измерения Дx окажется сравнимой с величиной погрешности прибора д , то в качестве границы доверительного интервала возьмите

.

Если одна из ошибок меньше другой в три или более раз, то меньшую отбросьте.

Окончательный результат запишите в виде

.

Оцените относительную погрешность результата измерений

Список литературы

1.Кассандров О.Н., Лебедев В.В. Обработка результатов наблюдений. - М.: Наука, 1970.

2.Сквайрс Дж. Практическая физика. - М.: Мир, 1971.

3.Яковлев Г.П., Алексеева З.З., Сушкевич А.А. Введение в статистические методы обработки результатов наблюдений. - Челябинск: ЧПИ, 1979.

4.Крамер Г., Математические методы статистики, пер. с англ., 2 изд., М., 1975

Размещено на Allbest.ru


Подобные документы

  • Сущность метрологии как науки об измерениях, предмет и методы ее изучения. Разновидности измерений, их отличительные признаки и особенности реализации. Обработка результатов прямых, косвенных и совместных измерений. Погрешности и пути их минимизации.

    курсовая работа [319,2 K], добавлен 12.04.2010

  • Измерения физических величин, их классификация и оценка истинного значения; обработка результатов. Понятие доверительного интервала: распределение Гаусса и Стьюдента. Понятие случайной величины и вероятностного распределения; методы расчета погрешностей.

    методичка [459,2 K], добавлен 18.12.2014

  • Освоение основных приемов статистической обработки результатов многократных измерений. Протокол результатов измерений. Проверка гипотезы о виде распределения методом линеаризации. Особенности объединения результатов разных серий измерений в общий массив.

    методичка [179,5 K], добавлен 17.05.2012

  • Методы определения достоверного значения измеряемой физической величины и его доверительных границ, используя результаты многократных наблюдений. Проверка соответствия экспериментального закона распределения нормальному закону. Расчет грубых погрешностей.

    контрольная работа [52,5 K], добавлен 14.12.2010

  • Обработка данных измерений величин и представление результатов с нужной степенью вероятности. Определение среднего арифметического и вычисление среднего значения измеренных величин. Выявление грубых ошибок. Коэффициенты корреляции. Косвенные измерения.

    реферат [116,2 K], добавлен 16.02.2016

  • Обоснование оценок прямых и косвенных измерений и их погрешностей. Введение доверительного интервала в асимптотическом приближении бесконечно большого числа экспериментов. Вычисление коэффициента корреляции для оценки зависимости случайных величин.

    реферат [151,5 K], добавлен 19.08.2015

  • Обработка результатов при прямых и косвенных измерениях. Принципы обработки результатов. Случайные и систематические погрешности, особенности их сложения. Точность расчетов, результат измерения. Общий порядок расчета суммы квадратов разностей значений.

    лабораторная работа [249,7 K], добавлен 23.12.2014

  • Критерий Пирсона, формулировка альтернативной гипотезы о распределении случайной величины. Нахождение теоретических частот и критического значения. Отбрасывание аномальных результатов измерений при помощи распределения. Односторонний критерий Фишера.

    лекция [290,6 K], добавлен 30.07.2013

  • Классическая теория измерений по поводу истинного значения физической величины, ее главные постулаты. Классификация погрешностей по способу выражения, ее типы: абсолютная, приведенная и относительная. Случайные погрешности, закон их распределения.

    реферат [215,4 K], добавлен 06.07.2014

  • Проведение проверки гипотезы о нормальности закона распределения вероятности результатов измерения случайной величины по критерию согласия Пирсона. Определение ошибок в массивах данных: расчет периферийных значений, проверка серии на равнорассеянность.

    контрольная работа [1,8 M], добавлен 28.11.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.