Уравнения эллиптического типа
Изучение свойств и описание состава пространств С.Л. Соболева: плотность, определения и обозначения. Исследование структуры интегральных операторов со слабой особенностью. Представления функции и теоремы вложения Соболева: эквивалент норм в пространстве.
Рубрика | Математика |
Вид | лекция |
Язык | русский |
Дата добавления | 08.11.2012 |
Размер файла | 186,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.
Подобные документы
Понятие и основные характеристики пространства Соболева, их главные свойства, сущность простейшей теоремы вложения. Порядок применения пространства Соболева для доказательства существования и единственности обобщённого решения уравнения Лапласа.
курсовая работа [232,5 K], добавлен 12.10.2009Основные понятия и некоторые классические теоремы теории интерполяции. Определение общих свойств пространств Лоренца. Понятие нормы и спектрального радиуса неотрицательных матриц. Исследование интерполяционных признаков семейств конечномерных пространств.
курсовая работа [289,9 K], добавлен 12.01.2011Исследование доказательства теоремы Ферма в общем виде. Показано, что кроме уравнения второй степени уравнения Ферма не содержат других решений в целых числах. Предложено к рассмотрению 4 метода доказательства теоремы при целых x, y.
статья [20,8 K], добавлен 29.08.2004Понятие и характерные свойства обобщенных функций и обобщенных производных, их отличительные признаки и направления анализа. Решение и определение данных величин на основе специальных теорем. Сущность и структура, элементы пространства Соболева.
презентация [179,4 K], добавлен 30.10.2013Уравнения третьей степени и выше. Разложение левой части уравнения на множители, если правая часть равна нулю. Теорема Безу как один из методов, которые помогают решать уравнения высоких степеней. Определение и доказательство теоремы и следствия из нее.
научная работа [44,3 K], добавлен 25.02.2009Основные понятия и теоремы. Свойства метризуемых пространств. Примеры метризуемых и неметризуемых пространств. Метризуемое пространство хаусдорфово. Метризуемое пространство нормально. Выполняется первая аксиома счетности.
дипломная работа [273,3 K], добавлен 08.08.2007Основные понятия и факты теории линейных операторов. Определение и примеры линейных операторов. Ограниченность и норма линейного оператора. Сумма и произведение линейных операторов. Пространство линейных непрерывных операторов.
дипломная работа [240,7 K], добавлен 13.06.2007Суть великой теоремы Ферма. Формирование диофантового уравнения. Доказательство вспомогательной теоремы (леммы). Особенности составления параметрического уравнения с параметрами. Решение великой теоремы Ферма в целых положительных (натуральных) числах.
научная работа [31,1 K], добавлен 18.01.2010Основные элементы теорий однородных и краевых задач Римана, Гильберта, Нетера. Использование различных способов регуляризации полных особых интегральных уравнений. Некоторые основные свойства особых союзных операторов. Уравнения Фредгольма и Пуанкаре.
курсовая работа [565,3 K], добавлен 17.02.2014Основные определения и теоремы производной, дифференциала функции; техника дифференцирования. Применение производных к вычислению пределов. Исследование функции на монотонность и точки локального экстремума. Полное исследование функции, асимптоты графика.
контрольная работа [539,8 K], добавлен 20.03.2016