Пирамида: площадь и объем

Определение понятия пирамиды - тела, образованного плоским многоугольником, точкой, не лежащей в плоскости этого многоугольника, и всех отрезков, соединяющих точки основания с вершиной. Площадь боковой и полной поверхности пирамиды. Расчет ее объема.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 06.11.2012
Размер файла 92,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

Определение понятия

Площадь боковой поверхности пирамиды

Площадь полной поверхности пирамиды

Объем пирамиды

Заключение

Список использованной литературы

Введение

Пирамиды, несмотря на свою древность, могут многому нас научить. Исследованием пирамид с использованием новейших приборов занимались американцы, японцы. Пирамиды снимали со спутников. Американская станция "Маринер"' передала фотографии с Марса, на которых изображены такие же пирамиды, что наводит на мысль об их внеземном происхождении. Так что же такое пирамиды?

Усыпальницы египетских фараонов. Крупнейшие из них -- пирамиды Хеопса, Хефрена и Микерина в Эль-Гизе в древности считались одним из Семи чудес света. Возведение пирамиды, в котором уже греки и римляне видели памятник невиданной гордыни царей и жестокости, обрекшей весь народ Египта на бессмысленное строительство, было важнейшим культовым деянием и должно было выражать, по всей видимости, мистическое тождество страны и ее правителя. Население страны работало на строительстве гробницы в свободную от сельскохозяйственных работ часть года. Ряд текстов свидетельствует о том внимании и заботе, которые сами цари (правда, более позднего времени) уделяли возведению своей гробницы и ее строителям. Известно также об особых культовых почестях, которые оказывались самой пирамиде.

Пирамиды выстроены на левом -- западном берегу Нила (Запад -- царство мертвых) и возвышались над всем городом мертвых -- бесчисленными гробницами, пирамидами, храмами.

Самая большая из трех -- пирамида Хеопса (зодчий Хемиун, 27 в. до н. э.). Ее высота была изначально 147 м, а длина стороны основания -- 232 м. Для ее сооружения потребовалось 2 млн. 300 тыс. огромных каменных блоков, средний вес которых 2,5 т. Плиты не скреплялись строительным раствором, лишь чрезвычайно точная подгонка удерживает их. В древности пирамиды были облицованы отполированными плитами белого известняка, вершины их были покрыты медными листами, сверкавшими на солнце (известняковую обшивку сохранила только пирамида Хеопса, покрытие других пирамид арабы использовали при строительстве Белой мечети в Каире).

Близ пирамиды Хефрена возвышается одна из крупнейших статуй древности и нашего времени -- высеченная из скалы фигура лежащего сфинкса с портретными чертами самого фараона Хефрена.

Великие пирамиды были окружены рядом небольших усыпальниц жен фараонов и их приближенных. В такие комплексы обязательно входили святилища Верхнего и Нижнего Египта, большие дворы для проведения праздника хеб-су, заупокойные храмы, служители которых должны были поддерживать культ умершего царя. Пространство вокруг пирамиды, окруженное стенами, посредством длинного крытого перехода соединялось с храмом на берегу Нила, где встречали тело фараона и начинались погребальные церемонии.

Все пирамиды точно сориентированы по сторонам света, что свидетельствует о высоком уровне астрономических знаний древних египтян, расчет углов наклона граней совершенно безукоризнен. В пирамиде Хеопса угол наклона таков, что высота пирамиды равна радиусу воображаемой окружности, в которую вписано основание пирамиды.

Замечательной инженерной находкой древних зодчих и строителей было сооружение в толще каменной кладки над погребальной камерой пяти разгрузочных камер, с помощью которых удалось снять и равномерно распределить колоссальную нагрузку на ее перекрытия. Помимо камер в пирамиде есть и другие пустоты -- коридоры, проходы и галереи, входы в которые были тщательно замурованы и замаскированы. Тем не менее захоронения в пирамидах были разграблены, видимо, довольно скоро после погребения фараонов. Воры хорошо знали все ловушки, так что они, скорее всего, были связаны либо со строителями, либо со жрецами, осуществлявшими захоронения.

Сооружения в Эль-Гизе своей грандиозностью и видимой бесполезностью поражали воображение уже в древности, что лучше всего передает арабская пословица: «Все на свете боится времени, но время боится пирамид».

Определение понятия

Пирамида - это многогранник, у которого одна грань (основание пирамиды) - это произвольный многоугольник (ABCDE, рис.80), а остальные грани (боковые грани) - треугольники с общей вершиной S, называемой вершиной пирамиды. Перпендикуляр SO, опущенный из вершины пирамиды на её основание, называется высотой пирамиды. В зависимости от формы многоугольника, лежащего в основании, пирамида может быть соответственно: треугольной, четырёхугольной, пятиугольной, шестиугольной и т.д. Треугольная пирамида является тетраэдром (четырёхгранником), четырёхугольная - пятигранником и т.д. Пирамида называется правильной, если в основании лежит правильный многоугольник, а её высота падает в центр основания. Все боковые рёбра правильной пирамиды равны; все боковые грани - равнобедренные треугольники. Высота боковой грани (SF) называется апофемой правильной пирамиды.

Если провести сечение abcde, параллельное основанию ABCDE (рис.81) пирамиды, то тело, заключённое между этими плоскостями и боковой поверхностью, называется усеченной пирамидой. Параллельные грани ABCDE и abcde называются основаниями; расстояние Oo между ними - высотой. Усечённая пирамида называется правильной, если пирамида, из которой она была получена - правильная. Все боковые грани правильной усечённой пирамиды - равные равнобочные трапеции. Высота Ff боковой грани (рис.81) называется апофемой правильной усечённой пирамиды.

Пирамидой называется тело, образованное плоским многоугольником (основание), точкой, нележащей в плоскости этого многоугольника (вершина), и всех отрезков, соединяющих точки основания с вершиной.

Стороны многоугольника есть ребра основания. Прямые, соединяющие вершины основания с вершиной трапеции, есть боковые ребра. Совокупности прямых, соединяющих каждую по отдельности сторону основания с вершиной, называются боковыми гранями.

Пирамиды классифицируются по числу сторон многоугольника, лежащего в их основании. Говорят о треугольной, четырехугольной и вообще n-угольной пирамидах.

Заметим, что n-угольная пирамида имеет n+1 граней: n боковых граней и основание. При вершине пирамиды мы имеем n-гранный угол с n плоскими и n двугранными углами. Они соответственно называются плоскими углами при вершине и двугранными аглами при боковых ребрах. При вершинах основания мы имеем n трехгранных углов; их плоские углы, образованные боковыми ребрами и сторонами основания, называются плоскими углами при основании, двугранные углы между боковыми гранями и плоскостью основания - двугранными углами при основании.

Треугольная пирамида иначе называется тетраэдром (т.е. четырехгранником). Особенность тетраэдра в том, что любая из его граней может быть принята за основание.

Пирамида называется правильной, если в её основании лежит правильный многоугольник, а высота, опущенная из вершины пирамиды на основание, пересекает его в центре этого многоугольника (иначе говоря, вершина пирамиды проектируется в центр основания).

Заметим, что правильная пирамида не является, вообще говоря, правильным многогранником.

Отметим некоторые свойства правильной n-угольной пирамиды на примере треугольной пирамиды. Как известно центр правильного треугольника совпадает с центром вписанной и описанной окого него окружности. Поэтому отрезки АО, ВО и СО равны как радиусы.

Поэтому прямоугольные треугольники АОМ, ВОМ и СОМ равны по двум катетам (МО-общая). Из равенства этих треугольников следует равенство соответствующих сторон: АМ=ВМ=СМ

Свойство 1 В правильной n-угольной пирамиде все боковые ребра равны между собой.

Из равенства ребер следует и равенство боковых граней. Треугольники АВМ, ВСМ и АСМ равны по трем сторонам.

Свойство 2 Все боковые грани правильной n-угольной пирамиды суть равные равнобедренные треугольники, поэтому все плоские углы при вершине равны, все плоские углы при основании равны.

Из равенства прямоугольных треугольников ОРМ, ОТМ и ОКМ (ОТ=ОР=ОК как радиусы вписанной окружности; МО - общая) следует равенство всех двугранных углов при основании пирамиды РОРМ=РОТМ=РОКМ

Свойство 3 В правильной n-угольной пирамиде все двугранные углы при основании равны.

Нужно отметить случай, когда одно из боковых ребер пирамиды перпендикулярно основанию. Такая пирамида называется прямоугольной.

Апофема - высота боковой грани пирамиды, проведенная из вершины на ребро основания.

Теорема 1. Если все боковые грани пирамиды наклонены к плоскости основания под одинаковым углом, то в основание такой пирамиды можно вписать круг, а высота, опущенная из вершины на основание, падает в центр вписанного в основание круга. Эту теорему можно сформулировать и так: Если все апофемы (высоты боковых граней) пирамиды равны, то в основание такой пирамиды можно вписать круг, а высота, опущенная из вершины на основание, падает в центр вписанного в основание круга.

Доказательство. Докажем теорему на при мере треугольной пирамиды. Пусть дана пирамида ABCM, М -вершина, АВС - основание, МО - высота пирамиды. В боковой грани АМВ проведем высоту МК. В плоскости основания соединим точку О (основание высоты) с точкой К. ОК перпендикулярна АВ (по теореме о трех перпендикулярах, где МК - наклонная, ОК её проекция на плоскость и АВ - прямая в плоскости). По определению угол МКО-линейный угол двугранного угла между плоскостью МАВ и основанием ABC. Таким же образом проведем высоты МР и МТ соответственно в боковых гранях МВС и MAC и докажем, что углы МРО и МТО - линейные углы двугранных углов, образованных соответствующими боковыми гранями МВС и MAC с основанием ABC. По условию углы МКО, МРО и МТО равны. Рассмотрим треугольники МКО, МРО и МТО, они прямоугольны и равны (по катету и острому углу, МО - общая и углы МКО, МРО и МТО равны по условию). Из равенства этих треугольников следует, что их соответствующие стороны ОК, ОР и ОТ равны, а значит, в треугольнике ABC есть такая точка, которая равноудалена от сторон треугольника, то есть в него можно вписать круг. Для второго случая (равенства апофем) доказательство изменится только в том месте, где говорится, что треугольники равны по катету и углу. Это место надо поменять на: треугольники равны по катету и гипотенузе (МО - общая, МТ=МР=МК - апофемы).

Теорема 2. Если все боковые ребра пирамиды наклонены к плоскости основания под одинаковым углом, то около основания такой пирамиды можно описать окружность, а высота, опущенная из вершины на основание, падает в центр описанной около основания окружности. Эту теорему можно сформулировать и так: Если все боковые ребра пирамиды равны, то около основания такой пирамиды можно описать окружность, а высота, опущенная из вершины на основание, падает в центр описанной около основания окружности.

Доказательство. Докажем теорему на при мере треугольной пирамиды. Пусть дана пирамида ABCM, М - вершина, ABC - основание, МО - высота пирамиды. В плоскости основания соединим точку О (основание высоты) со всеми вершинами основания А, В и С. Угол МВО - угол между ребром MB и плоскостью основания (угол между прямой и плоскостью есть угол между этой прямой и её проекцией на эту плоскость). Таким же образом докажем, что углы МСО и МАО - углы, образованные соответствующими ребрами МС и МА с плоскостью основания. Углы МВО, МСО и МАО равны по условиям теоремы.

Рассмотрим треугольники МВО, МСО и МАО, они прямоугольны и равны (по катету и острому углу, МО - общая и углы МВО, МСО и МАО равны по условию). Из равенства этих треугольников следует, что их соответствующие стороны ОВ, ОС и ОА равны, а значит, в основании есть такая точка, которая равноудалена от вершин треугольника ABC, то есть около него можно описать окружность. Для второго случая (равенства боковых ребер) доказательство изменится только в том месте, где говорится, что треугольники равны по катету и углу. Это место надо поменять на: треугольники равны по катету и гипотенузе (МО - общая, МА=МВ=МС - боковые ребра).

площадь пирамида многоугольник плоскость

Площадь боковой поверхности пирамиды

Площадь боковой поверхности произвольной пирамиды равна сумме площадей её боковых граней. Специальную формулу для выражения этой площади имеет смысл дать в случае правильной пирамиды. Так, пусть дана правильная пирамида, в основании которой лежит правильный n-угольник со стороной, равной а. Пусть h - высота боковой грани, называется также апофемой пирамиды. Площадь одной боковой грани равна 1/2ah, а вся боковая поверхность пирамиды имеет площадь, равную n/2ha.Так как na - периметр основания пирамиды, то можно написать найденную формулу в виде:

Площадь боковой поверхности правильной пирамиды равна произведению её апофемы на половину периметра основания.

Что касается площади полной поверхности, то просто к боковой прибавляем площадь основания.

Вписанные и описанные сфера и шар. Нужно отметить, что центр вписанной в пирамиду сферы лежит на пересечении биссекторных плоскостей внутренних двугранных углов пирамиды. Центр описанной около пирамиды сферы лежит на пересечении плоскостей, проходящих через середины ребер пирамиды и перпендикулярных им.

Усеченная пирамида. Если пирамиду рассеч плоскостью, параллельной её основанию, то часть, заключенная между секущей плоскостью и основанием, называется усеченной пирамидой. На рисунке показана пирамида, отбрасывая её часть, лежащую выше секущей плоскости, получаем усеченную пирамиду. Ясно, что малая отбрасываемая пирамида гомотетична большой пирамиде с центром гомотетии в вершине. Коэффициент подобия равен отношению высот: k=h2/h1, или боковых ребер, или других соответствующих линейных размеров обеих пирамид. Мы знаем, что площади подобных фигур относятся, как квадраты линейных размеров; так площади оснований обеих пирамид (т.е. пощади оснований усеченной пирамиды) относятся, как

Здесь S1 - площадь нижнего основания, а S2 - площадь верхнего основания усеченной пирамиды. В таком же отношении находятся и боковые поверхности пирамид. Сходное правило имеется и для объемов.

Объемы подобных тел относятся, как кубы их линейных размеров; например, объемы пирамид относятся, как произведения их высот на площади оснований, откуда наше правило получается сразу. Оно имеет совершенно общий характер и прямо следует из того, что объем всегда имеет размерность третей степени длины. Пользуясь этим правилом, выведем формулу, выражающую объем усеченной пирамиды через высоту и площади оснований.

Пусть дана усеченная пирамида с высотой h и площадями оснований S1 и S2. Если представить себе, что она продолжена до полной пирамиды, то коэффициент подобия полнорй пирамиды и малой пирамиды легко найти, как корень из отношения S2/S1. Высота усеченной пирамиды выражается как h = h1 - h2 = h1(1 - k). Теперь имеем для объема усеченной пирамиды (через V1 и V2 обозначены объемы полной и малой пирамид)

формула объема усеченной пирамиды

Выведем формулу площади S боковой поверхности правильной усеченной пирамиды через периметры Р1 и Р2 оснований и длину апофемы а. Рассуждаем точно так же, как и при выводе формулы для объема. Дополняем пирамиду верхней частью, имеем P2 = kP1, S2=k2S1, где k - коэффициент подобия, P1 и P2 - периметры оснований, а S1 и S2 - лощади боковых поверхностей всей полученной пирамиды и её верхней части соответственно. Для боковой поверхности найдем (а1 и а2 - апофемы пирамид, а = а1 - а2 = а1(1-k))

формула площади боковой поверхности правильной усеченной пирамиды

Площадь полной поверхности пирамиды

Площадь боковой поверхности правильной пирамиды равна произведению её апофемы на половину периметра основания.

Что касается площади полной поверхности, то просто к боковой прибавляем площадь основания.

Боковая поверхность правильной пирамиды равна произведению полупериметра основания на апофему.

Доказательство:

Если сторона основания а, число сторон n, то боковая поверхность пирамиды равна:

a•l•n/2 =a•n•l/2=pl/2

где l - апофема, а p - периметр основания пирамиды. Теорема доказана.

Эта формула читается так:

Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему пирамиды.

Sбок = pl/2

Площадь полной поверхности пирамиды вычисляется по формуле:

Sполн = Sбок + Sосн

Если пирамида неправильная, то ее боковая поверхность будет равна сумме площадей ее боковых граней.

Объем пирамиды

Объем пирамиды равен одной трети произведения площади основания на высоту.

Доказательство. Будем исходить из треугольной призмы. Проведем плоскость через вершину A' верхнего основания призмы и противолежащее ребро ВС нижнего основания. Эта плоскость отсечет от призмы треугольную пирамиду A'АВС. Оставшуюся часть призмы разложим на жва тела, проведя плоскость через диагонали A'С и B'C боковых граней. Полученные два тела также являются пирамидами. Считая треугольник A'B'C' основанием одной из них, а С её вершиной, увидим, что её основание и высота такие же, как и у первой отсеченной нами пирамиды, поэтому пирамиды A'АВС и CA'B'C' равновелики. Кроме того, обе новые пирамиды CA'B'C' и A'B'ВС также равновелики - это станет ясным, если примем за их основания треугольники ВСB' и B'CC'. Пирамиды CA'B'C' и A'B'ВС имеют общую вершину A', а их основания расположены в одной плоскости и равны, следовательно, пирамиды равновелики. Итак, призма разложена на три равновеликие между собой пирамиды; объем каждой из них равен одной трети объема призмы. Так как форма основания несущественна, то, вообще, объем n-угольной пирамиды равен одной трети объема призмы с той же высотой и тем же (или равновеликим) основанием. Вспоминая формулу, выражающую объем призмы, V=Sh, получим окончательный результат: V=1/3Sh

Заключение

Я рассмотрела большую тему о пирамидах, прочитала массу литературы об этих замечательных фигурах. Эта тема вызвала у меня неподдельный интерес. Я подробно рассмотрела элементы пирамиды, изучила основные свойства, решила множество задач на нахождение площади боковой поверхности и объема пирамиды.… Но это, конечно, не предел моего рассмотрения, на этом невозможно поставить точку. Во-первых, потому, что можно найти еще множество различной литературы по этой теме, а во-вторых, исследования пирамид продолжаются и сегодня. Этим занимаются ученые США, Японии, ФРГ и других государств. Ученые всех специальностей: астрономы и математики, химики и врачи, генетики и геронтологи - пытаются разгадать тайну пирамид и более подробно изучить их свойства.

Пирамида имеет широкое применение в строительстве домов, различных сооружений. Я думаю, что я в жизни столкнусь еще не раз с этой фигурой, и круг моих знаний будет расширен. Советую учащимся интересоваться не только элементарными сведениями о пирамиде, но и изучать их глубже, что и сделала я.

Список использованной литературы

1. Аксёнова М.Д. Энциклопедия для детей. М.: «Аванта +», 2000.

2. Антонов В.Ф. Биофизика. М.: «Владос», 2000.

3. Барыбин Н.А. Геометрия: Учебник для 10 - 11, М.: Просвещение, 1986.

4. Димде М. Целительная сила пирамид, М.: изд. Гранд, 2000.

5. Киреев А. Лечебные пирамиды: возможное и действительное. М.: Просвещение, 2000.

6. Погорелов А.В. Геометрия: Учебник для 7-11, 5-е изд. М: Просвещение, 1996.

7. Савин А.П. Энциклопедический словарь юного математика. М.: Просвещение, 1985.

8. Шарыгин И.Ф. Факультативный курс по математике. XI класс. М.: Просвещение, 1991.

9. Штангл Ф. Маятник, рамка, сенсор. С-Петербург: Питер, 1999.

Размещено на Allbest.ru


Подобные документы

  • Египетские пирамиды как одно из семи чудес света. Пирамиды Хеопса, Хефрена и Микерина в Эль-Гизе. Геометрическая форма строений. Апофема и свойства правильной пирамиды. Сущность понятия "тетраэдр". Площадь полной и боковой поверхности, объем, теорема.

    презентация [3,1 M], добавлен 12.12.2013

  • Понятие и определение пирамиды. Отрезки, соединяющие вершину пирамиды с вершинами основания. Площадь боковой поверхности, основания и полной поверхности пирамиды. Свойства произвольных, усеченных и правильных пирамид. Определение высоты боковой грани.

    презентация [726,8 K], добавлен 05.04.2012

  • Основные элементы пирамиды. Понятие правильной пирамиды. Нахождение площади основания, высоты пирамиды и высоты боковой грани, вписанной и описанной окружностей и точки пересечения диагоналей. Треугольная, четырехугольная и шестиугольная пирамиды.

    презентация [561,8 K], добавлен 19.09.2011

  • Отрезки, соединяющие вершину пирамиды с вершинами основания. Поверхность пирамиды, основание и боковые грани. Определение высоты пирамиды. Произвольные, усеченные и правильные пирамиды. Нахождение боковой поверхности правильной пирамиды и ее объема.

    презентация [726,6 K], добавлен 08.06.2011

  • Определение пирамиды как геометрической фигуры, ее виды. Проекция треугольной пирамиды. Основные свойства полной и усеченной пирамиды, нахождение площади и объема, плоские сечения. Пример построения сечения пирамиды с плоскостью по заданным параметрам.

    практическая работа [2,2 M], добавлен 16.06.2009

  • По заданным координатам пирамиды, ее основанию и высоте нахождение длины ребер и угла между ними, площадь основания и объем пирамиды, проекцию вершины на плоскость, длину высоты. Расчет угла наклона ребра к основанию пирамиды. Построение чертежа.

    контрольная работа [66,3 K], добавлен 29.05.2012

  • Правильная пирамида. Сечение пирамиды, проходящее через вершину и диагональ основания. Ось правильной пирамиды. Апофема пирамиды. Усеченная пирамида. Боковые грани правильной усеченной пирамиды. Боковое ребро пирамиды.

    доклад [7,8 K], добавлен 27.10.2006

  • Обзор понятия геометрической фигуры призмы, ее основания и боковых граней. Построение отрезков, нахождение высоты прямой и наклонной призмы. Расчет полной и боковой площадей поверхности фигуры. Изучение теоремы о площади боковой поверхности прямой призмы.

    презентация [82,8 K], добавлен 17.05.2012

  • Понятие пирамиды, ее математическое обоснование, отражение в науке и искусстве. Принцип Кавальери. Сечение пирамиды как многоугольника, который образуется при пересечении пирамиды с секущей плоскостью. Правильная пирамида и ее основополагающие свойства.

    презентация [1,5 M], добавлен 18.04.2014

  • Геометрическое тело, ограниченное замкнутой боковой поверхностью и двумя пересекающими ее поверхностями (основаниями). Элементы цилиндра, история термина; цилиндрическая архитектура. Определение площади боковой, полной поверхности и объема цилиндра.

    презентация [678,0 K], добавлен 09.12.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.