Решение математических задач с помощью теорем вероятности
Анализ средних статистических данных, полученных путем простых и сложных расчетов. Расчет вероятности остатка не распроданных микроволновых печей одной марки. Вычисление вероятной доли определенных изделий из общей массы продукции. Теорема Муавра-Лапласа.
Рубрика | Математика |
Предмет | Теория вероятности |
Вид | задача |
Язык | русский |
Прислал(а) | Арина |
Дата добавления | 09.10.2012 |
Размер файла | 37,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Правила применения уравнения Бернулли для определения возможности наступления события. Использование формул Муавра-Лапласа и Пуассона при неограниченном возрастании числа испытаний. Примеры решения задач с помощью теоремы Бернулли о частоте вероятности.
курсовая работа [265,6 K], добавлен 21.01.2011Закон распределения случайной величины дискретного типа (принимающей отдельные числовые значения). Предельные теоремы схемы Бернулли. Вычисление вероятности появления события по локальной теореме Муавра-Лапласа. Интегральная формула данной теоремы.
презентация [611,2 K], добавлен 17.08.2015Применение классического определения вероятности для нахождения среди определенного количества деталей заданных комбинаций. Определение вероятности обращения пассажира в первую кассу. Использование локальной теоремы Муавра-Лапласа для оценки отклонения.
контрольная работа [136,0 K], добавлен 23.11.2014Порядок составления гипотез и решения задач на вероятность определенных событий. Вычисление вероятности выпадения различных цифр при броске костей. Оценка вероятности правильной работы автомата. Нахождение функции распределения числа попаданий в цель.
контрольная работа [56,6 K], добавлен 27.05.2013Определение вероятности появления поломок. Расчет вероятности успеха, согласно последовательности испытаний по схеме Бернулли. Нахождение вероятности определенных событий по формуле гипергеометрической вероятности. Расчет дискретной случайной величины.
контрольная работа [69,3 K], добавлен 17.09.2013Вероятность события. Теоремы сложения и умножения событий. Теорема полной вероятности события. Повторные независимые испытания. Формула Бернулли, формула Пуассона, формула Муавра-Лапласа. Закон распределения вероятностей случайных дискретных величин.
контрольная работа [55,2 K], добавлен 19.12.2013Условия неограниченного приближения закона распределения суммы n независимых величин к нормальному закону распределения. Сущность центральной предельной теоремы. Определение с помощью теоремы Муавра-Лапласа вероятности наступления события в серии опытов.
презентация [91,7 K], добавлен 01.11.2013Поиск искомой вероятности через противоположное событие. Интегральная формула Муавра–Лапласа. Нахождение вероятности попадания в заданный интервал распределенной случайной величины по ее математическому ожиданию и среднему квадратическому отклонению.
контрольная работа [102,5 K], добавлен 17.03.2011Вычисление по классической формуле вероятности. Определение вероятности, что взятая наугад деталь не соответствует стандарту. Расчет и построение графиков функции распределения и случайной величины. Вычисление коэффициента корреляции между величинами.
контрольная работа [708,2 K], добавлен 02.02.2011Рациональность решения задач с помощью теорем Чевы и Менелая, чем их решение другими способами, например векторным. Доказательство теорем, дополнительное построение. Трудности, связанные с освоением этих теорем, оправданные применением при решении задач.
контрольная работа [388,3 K], добавлен 05.05.2019