Основные свойства множеств

Основы арифметических действий над натуральными числами. Операции декартового произведения множеств. Характеристика комплексных чисел и возможные операции над ними. Пересечение, объединение, дополнение, декартово произведение в курсе школьной математики.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 08.10.2012
Размер файла 21,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Основные свойства множеств

Рассмотрим теперь кратко простые теоретико-множественные понятия и теоретико-множественные операции: пересечение, объединение, дополнение, декартово произведение и др. Для случая конечных множеств они лежат в и поэтому очень важны для школьной математики. Мы ограничимся совсем краткими определениями и пояснениями. Множество не содержащее ни одного элемента называют пустым множеством. Его обозначается знаком . Пустое множество можно определить любым противоречивым свойством, например = {х | xх}, в области множеств оно играет как бы роль нуля.

Множество N называется подмножеством множества М тогда и только тогда, когда каждый элемент множества N принадлежит множеству М. Отношение между множеством М и любым его подмножеством N называется включением и обозначается символом : МN.

Отметим следующие элементарные утверждения о понятиях подмножества и включения, прямо вытекающих из определения.

а) Каждое множество М является подмножеством самого себя: ММ. Любое подмножество N множества М, отличное от М, называется собственным подмножеством множества М; соответствующее включение также называется собственным и обозначается : МN. Принято считать, что пустое множество является подмножеством любого множества М.

б) Отношение включения транзитивино, т. е. из NМ и РN следует, что РМ. Транзитивно также отношение собственного включения.

в) Очень важно не смешивать отношения принадлежности и включения : если {а}М, то аМ, и наоборот; но из {a}М не следует {а}М. Так, например, если М = {1, 2}, то это означает, что 1М и 2М, но для всех других объектов х справедливо х М; для включения же правильны следующие утверждения: М, {1}М, {2}М., {1, 2}М.

Другой пример. Пустое множество не имеет элементов хM для любого объекта х. Между тем содержит одно подмножество, а именно само себя.

Введем несколько операций над множествами.

а) Пересечением множеств М и N называют множество тех объектов, которые принадлежат множествам М и N одновременно.

Обозначение: МN = {х|хМ и хN}.

б) Объединением множеств М и N называют множество тех элементов, которые содержатся по крайней мере в одном из множеств М или N. Обозначение: MN = {х | хМ или хN}.

в) Разностью множеств М и N называют множество тех элементов, которые принадлежат множеству М и не принадлежат множеству N. Обозначение: М \ N. = {х | хМ и хN}.

г) Симметрической разностью множеств М и N называют множество тех элементов, которые принадлежат только множеству М - или только множеству N.

Обозначение: MN ={ x | (xМ и хN) или (хN и хМ)}.

Введенные теоретико-множественные операции наглядно иллюстрируются рисунком 2, где множества М и N изобрансены пересекающимися кругами:

М N -- точки области II;

М N -- точки областей I, II, III;

М \ N -- точки области I;

N \ М -- точки области III;

M N -- точки областей I и III.

д) В конкретных математических областях бывает полезно ввести в рассмотрение столь обширное множество U, что все рассматриваемые множества окажутся его подмножествами. Такое множество U принято называть универсальным множеством или универсумом. Отметим, что "универсальное множество" понятие относительное: оно выбирается для какого-нибудь определенного раздела науки и притом часто даже явно не определяется, а просто подразумевается.

Так, например, в элементарной планиметрии в качестве универсального множества принято рассматривать множество всех точек плоскости. Различные фигуры, изучаемые в планиметрии, можно считать множествами точек, т. е. подмножествами так выбранного универсального множества.

В элементарной арифметике универсальным множеством считается множество Z всех целых рациональных чисел и т. д.

е) Если выбрано некоторое универсальное множество U, то возникает новая теоретико-множественная операция -- дополнение. Для всякого множества М (при этом подразумевается, что М -- подмножество универсального множества U его дополнение, обозначаемое через М, -- это множество всех элементов универсума, которые не принадлежат множеству М:

М = {х | х U и xM}

Таким образом, дополнение -- это частный случай разности:

математика декартовый число множество

M = U \ M,

все отличие здесь состоит в том, что разность берется относительно фиксированного множества, содержащего все множества, которые в данной связи рассматриваются.

Рассмотрим теперь операции декартового произведения множеств. Пусть A и B - два множества. Тогда множество C = {(a, b) | aA, bB} всех пар (a, b), где a и b независимо друг от друга принимают все значения соответственно из множеств A и B называется декартовым произведением множеств А и В и обозначается через А х В. Если А и В -- конечные множества, содержащие соответственно m и n элементов, то сразу видно, что множество А х В содержит mn элементов.

Самостоятельный интерес представляет тот частный случай, когда множества А и В совпадают: А = В. Чтобы его рассмотреть, вы введем новый термин.

Упорядоченной парой элементов множества А будем называть объект (а1, а2), состоящий из двух (не обязательно различных) элементов а1, а2 А, с указанием, какой из них следует считать первым, а какой -- вторым. Так, например, если А = {1, 2, 3, 4., 5}, то упорядоченные пары (2, 3) и (3, 2) следует считать по определению различными. Упорядоченными парами элементов из А считаются также объекты (1, 1), (2, 2), (3, 3), (4, 4), (5, 5). Упорядоченные пары мы будем заключать в круглые скобки и обозначать жирными строчными латинскими буквами: a = (а1 а2), в отличие от неупорядоченных пар, которые, как и множества элементов, записываются в фигурных скобках: {а1 а2}.

Назовем множество

С = {(а1, а2) | a1 А, a2 А}

всех упорядоченных пар (а1 а2) элементов из А декартовым квадратом множества А и будем обозначать его через A2.

Рассмотренные свойства множеств и операции над ними в неявном, виде присутствуют в начальном преподавании арифметики. Мы особенно подчеркиваем, что речь идет об их неявном присутствии: бессмысленно было бы в I или II классе давать явные определения арифметических действий. Само слово «действие» для арифметических операций указывает на то, что на начальном уровне развития детей сложение, вычитание, умножение и деление возникают как действия над конкретными множествами из мира, свойственного школьникам. Вековой опыт обучения на всех уровнях показывает, что человек обычно сначала делает нечто, а лишь затем задумывается над тем, какими же общими свойствами обладают его действия.

Теоретико-множественное обоснование арифметических действий над натуральными числами дается довольно элементарно, так как более строгое обоснование оказывается достаточно трудоемким и мы не имеем возможности провести его здесь со всей необходимой тщательностью. Как мы уже говорили, с точки зрения теории множеств натуральные кардинальные числа отвечают классам равнамощных конечных множеств, к ним, естественно, присоединяется и число нуль как кардинальное число, соответствующее пустому множеству. Тогда элементарные отношения и действия над натуральными числами вводятся следующим образом.

1. Отношение «равно», «больше», «меньше». Пусть m и n -- два натуральных числа и пусть М и N -- два множества, кардинальные числа которых суть соответственно m и n. Тогда m меньше n (а n больше m), если множество М равномощно некоторому собственному подмножеству множества N. Как видно из этого же определения, m = n означает, что множества М и N равномощны. Для оправдания такого определения необходимо, конечно, показать, что оно не зависит от выбранных множеств М и N. Иначе говоря, надо доказать, что если М' и N' -- два других множества с числом элементов m и n соответственно и если при этом М равномощно собственному подмножеству множества N', то и М' равномощно собственному подмножеству множества N', и наоборот. Это доказательство мы предоставим читателю. Отметим, что определение неравенства для бесконечных кардинальных чисел получается более сложным.

2. Сложение. Для определения суммы кардинальных чисел поступают так. Пусть m и n -- два натуральных числа. Выбираем опять произвольно два непересекающихся множества М с m N с n элементами соответственно, и пусть S -- их объединение: S = MN. Тогда по определению сумма s = m + n -- это кардинальное число множества S. Покажем, что сумма s от выбора множеств M и N не зависит, а зависит только от их мощностей. Пусть М' и N'-- другие множества, равномощные множествам М и N соответственно, и пусть при этом также M' N' = ; тогда S' = М' N' равномощно множеству S = М N. Следует все время иметь в виду, что кардинальное число объединения есть сумма кардинальных чисел объединяемых множеств, только если последние не имеют общих элементов (имеют пустое пересечение). В случае пересекающихся множеств имеет место более общее, правило:

|MN| = |М| +|N| - |МN|

(где через |M| обозначается кардинальное число множества M).

3. Вычитание. Вычитание натуральных чисел поясняется в младших классах на такой модели из теории конечных множеств: пусть m и n -- натуральные числа и пусть М и N -- два множества с | М | = m и |N| = n такие, что MN . Тогда d = n - m есть кардинальное число теоретико-множественной разности

D |MN| = |М| +|N| - |МN|

(где через |M| обозначается кардинальное число множества M).ел отвечает образованию декартова произведения множеств. А. именно имеет место разномощность.

|M x N| = |M||N|

Так что, если |М| = m и |N| = n, то р = mn - это мощность декартова произведения М х М. Отметим, что Г. Кантор перенес определения арифметических действий и на случай бесконечных кардинальных чисел.

Размещено на Allbest.ru


Подобные документы

  • Понятие множества, его трактование Георгом Кантором. Условные обозначения множеств. Виды множеств, способы их задания. Операции над множествами (пересечение, объединение, разность и дополнение), условия их равенства и основные свойства, отношения.

    презентация [1,2 M], добавлен 12.12.2012

  • Понятия множеств и их элементов, подмножеств и принадлежности. Способы задания множеств, парадокс Рассела. Количество элементов или мощность. Сравнение множеств, их объединение, пересечение, разность и дополнение. Аксиоматическая теория множеств.

    курсовая работа [1,5 M], добавлен 07.02.2011

  • Понятие множества, его обозначения. Операции объединения, пересечения и дополнения множеств. Свойства счетных множеств. История развития представлений о числе, появление множества натуральных, рациональных и действительных чисел, операции с ними.

    курсовая работа [358,3 K], добавлен 07.12.2012

  • Определение понятия множеств Г. Кантора, их примеры и обозначения. Способы задания, включение и равенство множеств, операции над ними: объединение, пересечения, разность, дополнение, их определение и наглядное представление на диаграмме Эйлера-Венна.

    реферат [70,9 K], добавлен 11.03.2009

  • Типичные примеры рефлексивных бинарных отношений. Понятие множества и его элементов. Операции над множествами: объединение, пересечение и разность. Декартово произведение множеств. Отношения функциональные, эквивалентности, порядка. Отношения степени n.

    контрольная работа [163,2 K], добавлен 08.11.2009

  • Алгоритм упорядочивания множества. Определение декартового произведения, его графическая интерпретация. Обратное декартово произведение множеств. Проецирование на оси координат и на координатные плоскости. Область определения и область значений.

    лекция [126,5 K], добавлен 18.12.2013

  • Основные обозначения и понятия, относящиеся к множествам, операции над ними. Объединение, пересечение и разность двух множеств и непринадлежность к нему элемента. Первая и вторая теорема Вейерштрасса, Ферма и Ролля. Вычисление интеграла вероятности.

    контрольная работа [389,2 K], добавлен 12.12.2010

  • Мономорфные стрелки. Эпиморфные стрелки. Изострелки. КатегориЯ множеств. Мономорфизм в категории множеств. Эпиморфизм в категории множеств. Начальные и конечные объекты в категории множеств. Произведение в категории множеств.

    дипломная работа [144,3 K], добавлен 08.08.2007

  • Первоначальные элементы математики. Свойства натуральных чисел. Понятие теории чисел. Общие свойства сравнений и алгебраических уравнений. Арифметические действия со сравнениями. Основные законы арифметики. Проверка результатов арифметических действий.

    курсовая работа [200,4 K], добавлен 15.05.2015

  • Понятие множества и его элементов. Обозначение принадлежности элемента множеству. Конечные и бесконечные множества. Строгое и нестрогое включение. Способы задания множеств. Равенство множеств и двухсторонее включение. Диаграммы Венна для трех множеств.

    презентация [564,8 K], добавлен 23.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.