Комплексные числа
Особенности решений уравнений с комплексным переменным. Этапы развития теории функций комплексного переменного. Причины возникновения комплексных чисел. Основные способы решения алгебраических уравнений. Развитие техники операций над комплексными числами.
Рубрика | Математика |
Вид | реферат |
Язык | русский |
Дата добавления | 12.09.2012 |
Размер файла | 43,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Комплексные числа
комплексный число переменный уравнение
Введение
Решение многих задач физики и техники приводит к квадратным уравнениям с отрицательным дискриминантом. Эти уравнения не имеют решения в области действительных чисел. Но решение многих таких задач имеет вполне определенный физический смысл. Значение величин, получающихся в результате решения указанных уравнений, назвали комплексными числами. Комплексные числа широко использовал отец русской авиации Н. Е. Жуковский (1847 - 1921) при разработке теории крыла, автором которой он является. Комплексные числа и функции от комплексного переменного находят применение во многих вопросах науки и техники.
Цель настоящего реферата знакомство с историей появления комплексных чисел, с действиями с комплексными числами, решение уравнений с комплексным переменным.
Понятие о комплексных числах
Для решения алгебраических уравнений недостаточно действительных чисел. Поэтому естественно стремление сделать эти уравнения разрешимыми, что в свою очередь приводит к расширению понятия числа. Например, для того чтобы любое уравнение х+а=в имело корни, положительных чисел недостаточно и поэтому возникает потребность ввести отрицательные числа и нуль.
Древнегреческие математики считали, что а=с и в=а только натуральные числа, но в практических расчетах за два тысячелетия до нашей эры в Древнем Египте и Древнем Вавилоне уже применялись дроби. Следующим важным этапом в развитии понятия о числе было введение отрицательных чисел - это было сделано китайскими математиками за 2 века до нашей эры. Отрицательные числа применял в 3 веке нашей эры древнегреческий математик Диофант, знавший уже правила действий над ними, а в 7 веке нашей эры эти числа подробно изучили индийские ученые, которые сравнивали такие числа с долгом. С помощью отрицательных чисел можно было единым образом описывать изменение величин. Уже в 8 веке нашей эры было установлено, что квадратный корень из положительного числа имеет два значение - положительное и отрицательное, а из отрицательных чисел квадратные корни извлечь нельзя: нет такого числа х, чтобы х2 = -9. В 16 веке в связи с изучением кубических уравнений оказалось необходимым извлекать квадратные корни из отрицательных чисел. В формуле для решения кубических уравнений содержатся кубические и квадратные корни. Эта формула безотказно действует в случае, когда уравнение имеет один действительный корень (например, для уравнения х3+3х-4=0), а если оно имело 3 действительных корня (например, х3-7х+6=0),то под знаком квадратного корня оказывалось отрицательное число. Получалось, что путь к этим 3 корням уравнения ведет через невозможную операцию извлечения квадратного корня из отрицательного числа.
Чтобы объяснить получившийся парадокс, итальянский алгебраист Дж. Кардано в 1545 предложил ввести числа новой природы. Он показал, что система уравнений х+у=10, ху=40 не имеющая решений в множестве действительных чисел, имеет решение всегда х=5, у =5, нужно только условиться действовать над такими выражениями по правилам обычной алгебры и считать, что = -а. Кардано называл такие величины «чисто отрицательными» и даже «софистически отрицательными», считая их бесполезными и стремился не применять их. В самом деле, с помощью таких чисел нельзя выразить ни результат измерения какой-нибудь величины, ни изменение этой величины. Но уже в 1572г. вышла книга итальянского алгебраиста Р. Бомбелли, в котором были установлены первые правила арифметических операций над такими числами, вплоть до извлечения из них кубических корней. Название «мнимые числа» ввел в 1637г. французский математик и философ Р. Декарт, а в 1777г. один из крупнейших математиков VIII века Х. Эйлер предложил использовать первую букву французского числа i=(мнимой единицы), этот символ вошел во всеобщее употреб-ление благодаря К. Гауссу (1831г).
В течении 17 века продолжалось обсуждение арифметической природы мнимостей, возможности дать им геометрическое истолкование. Постепенно развивалась техника операций над комплексными числами. На рубеже 17-18 веков была построена общая теория корней n-й степени сначала из отрицательных, а впоследствии и из любых комплексных чисел.
В конце 18 века французский математик Ж. Лагранж смог сказать, что математический анализ уже не затрудняют мнимые величины. С помощью комплексных чисел научились выражать решения линейных дифференциальных уравнений с постоянным коэффициентом. Такие уравнения встречаются, например, в теории колебаний материальной точки в сопротивляющейся среде.
Я. Бернулли применил комплексные числа для вычисления интегралов. Хотя в течении 18 века с помощью комплексных чисел были решены многие вопросы, в том числе и прикладные задачи, связанные с картографией, гидродинамикой и т. д., однако еще не было строго логического обоснования теории этих чисел. Поэтому французский ученый П. Лаплас считал, что результаты, получаемые с помощью мнимых чисел, - только наведение, приобретающие характер настоящих истин лишь после подтверждения прямыми доказательствами. В конце 18- начале 19 веков было получено геометрическое истолкование комплексных чисел. Датчанин
Г.Вессель, француз Ж. Арган и немец К. Гаусс независимо друг от друга предложили изображать комплексное число z=a+bi точкой М(а,b) на координатной плоскости. Позднее оказалось, что еще удобнее изображать число не самой точкой М, а вектором ОМ, идущим в эту точку из начала координат. При таком истолковании сложению и вычитанию комплексных чисел соответствуют эти же операции над векторами.
Геометрические истолкования комплексных чисел позволили определить многие понятия, связанные с функциями комплексного переменного, расширило область их применения. Стало ясно, что комплексные числа полезны во многих вопросах, где имеют дело с величинами, которые изображаются векторами на плоскости: при изучении течения жидкости, задач теории упругости, в теоретической электротехнике.
Большой вклад в развитие теории функций комплексного переменного внесли русские и советские ученые: Р.И. Мусхелишви-ли занимался ее приложениями к теории упругости, М.В. Келдыш и М.А. Лаврентьев - к аэродинамике и гидродинамике, Н. Н. Бого-любов и В.С. Владимиров - к проблемам квантовой теории поля.
Действия с комплексными числами
Рассмотрим решение квадратного уравнения х2 +1=0. Отсюда х2=-1. Число х, квадрат которого равен -1, называется мнимой единицей и обозначается i. Таким образом i2=-1, откуда i= . Решение квадратного уравнения, например, х2 -8х+25=0, можно записать следующим образом: х=4=4=4=43=43i.
Числа вида 4+3i и 4-3i называют комплексными числами. В общем виде комплексное число записывается а+bi, где a и b- действительные числа, а i - мнимая единица. Число а называется действительной частью комплексного числа, bi-мнимой частью этого числа, b- коэффициентом мнимой части комплексного числа.
Сложение комплексных чисел. Суммой двух комплексных чисел z1=a+bi и z2=c+di называется комплексное число z=(a+c)+(b+d)i. Числа a+bi и a-bi называются сопряженными. Их сумма равна действительному числу 2а, (а+bi)+(а-bi)=2а. Числа а+bi и -a-bi называются противоположными. Их сумма равна нулю. Комплексные числа равны, если равны их действительные части и коэффициенты мнимых частей: а+bi=c+di, если a=c, b=d. Комплексное число равно нулю тогда, когда его действительная часть и коэффициент мнимой части равны нулю, т.е. z=a+bi=0, если a=0,b=0. Действительные числа являются частным случаем комплексных чисел. Если b=0, то a+bi=a - действительное число. Если а=0, b0, то a+bi=bi - чисто мнимое число. Для комплексных чисел справедливы переместительный и сочетательный законы сложения. Их справедливость следует из того, что сложение комплексных чисел по существу сводится к сложению действительных частей и коэффициентов мнимых частей, а они являются действительными числами, для которых справедливы указанные законы.
Вычитание комплексных чисел определяется как действие, обратное сложению: разностью двух комплексных чисел a+ bi и c+di называется комплексное число х+уi, которое в сумме с вычитаемым дает уменьшаемое. Отсюда, исходя из определения сложения и равенства комплексных чисел получим два уравнения, из которых найдем, что х=а-с, у=b-d. Значит, (а+bi)-(c+di)=(a-c)+ (b-d)i.
Произведение комплексных чисел z1=a+bi и z2=c+di называется комплексное число z = (ac-bd)+(ad+bc)i, z1z2= (a+bi)(c+di)=(ac-bd)+(ad+bc)i. Легко проверить, что умножение комплексных чиcел можно выполнять как умножение многочленов с заменой i2 на -1. Для умножения комплексных чисел также справедливы переместительный и сочетательный законы, а также распределительный закон умножения по отношению к сложению.
Из определения умножения получим, что произведение сопряженных комплексных чисел равно действительному числу: (a +bi)(a-bi)=a2+b2
Деление комплексных чисел, кроме деления на нуль, определяется как действие, обратное умножению. Конкретное правило деления получим, записав частное в виде дроби и умножив числитель и знаменатель этой дроби на число, сопряженное со знаменателем:(a+bi):(c+di) =. = = +i.
Степень числа i является периодической функцией показателя
с периодом 4. Действительно, i2 =-1, i3 =-i, i4 = 1, i4n = (i4)n = 1n = 1, i4n+1=i, i4n+2 =-1, i4n+3 =-i.
Решение уравнений с комплексным переменным
Рассмотрим сначала простейшее квадратное уравнение z2=a, где заданное число, z- неизвестное. На множестве действительных чисел это уравнение:
1) имеет один корень z=0, если а=0;
2) имеет два действительных корня z1,2=, если а>0;
3) не имеет действительных корней, если а<0.
На множестве комплексных чисел это уравнение всегда имеет корень .
Задача 1. Найти комплексные корни уравнения z2=a, если:
1)а=-1; 2)а=-25; 3)а=-3.
1)z2=-1. Так как i2=-1, то это уравнение можно записать в виде z2=i2, или z2-i2=0. Отсюда, раскладывая левую часть на множители, получаем (z-i)(z+i)=0, z1=i, z2=-i.Ответ. z1,2=i.
2) z2 =-25. Учитывая, что i2=-1,преобразуем это уравнение: z2=(-1)25,
z2=i252, z2-52i=0, (z-5i)(z+5i)=0, откуда z1=5i, z2=-5i.Ответ.z 1,2=5i.
3) z2=-3, z2=i2()2, z2-()2i2=0, (z-i)(z+i)=0, z1 =i, z 2=-i.
Ответ. z1,2=i.
Вообще уравнение z2=a, где а<0 имеет два комплексных корня: Z1,2=i.
Используя равенство i2=-1, квадратные корни из отрицательных чисел принято записывать так: =i, =i=2i, = i. Итак, определен для любого действительного числа а (положительного, отрицательного и нуля). Поэтому любое квадратное уравнение az2+bz+c=0, где а,b,с- действительные числа, а0, имеет корни. Эти корни находятся по известной формуле:
Z1,2= .
Задача 2. Решить уравнение z2-4z+13=0. По формуле находим:
z1,2= = = = =23i.
Заметим, что найденные в этой задаче корни являются сопряженными: z1=2+3i и z2=2-3i. Найдем сумму и произведение этих корней: z1+z2=(2+3i)+(2-3i)=4, z1z2=(2+3i)(2-3i)=13.
Число 4- это 2-й коэффициент уравнения z2-4z+13=0, взятый с противоположным знаком, а число 13- свободный член, то есть в этом случае справедлива теорема Виета. Она справедлива для любого квадратного уравнения: если z1 и z2 - корни уравнения az2+bz+c=0, z1+z2= -, z1z2=.
Задача 3. Составить приведенное квадратное уравнение с действительными коэффициентами, имеющие корень z1=-1-2i.
Второй корень z2 уравнения является числом, сопряженным с данным корнем z1, то есть z2=-1+2i. По теореме Виета находим
P=-(z1+z2)=2, q=z1z2=5. Ответ z2-2z+5=0.
Заключение
В настоящем реферате дано понятие комплексных чисел, история их возникновения. Рассмотрены примеры действий с комплексными числами. Приведены примеры решения уравнений с комплексным переменным, что позволяет решить любые квадратные уравнения, даже с отрицательным дискриминантом.
В реферате также рассмотрена геометрическая интерпретация комплексных чисел в виде векторов.
Список литературы
1. Ш. А. Алимов, Ю. М. Колягин, Ю. В. Сидоров, Н. Е. Федорова,
М. И. Шабунин. Учебник для 8 класса по алгебре.- М.:
Просвещение, 1994.-С.134-139.
2. И. С. Петраков. Математические кружки в 8-10 классах.- М.:
Просвещение, 1987.- С.50-52.
3. А. П. Савин. Энциклопедический словарь юного математика.-М.:
Педагогика, 1989.- С. 143-147.
Размещено на Allbest.ru
Подобные документы
Об истории возникновения комплексных чисел и их роли в процессе развития математики. Алгебраические действия над комплексными числами и их геометрический смысл. Применение комплексных чисел к решению алгебраических уравнений 3-ей и 4-ой степеней.
курсовая работа [104,1 K], добавлен 03.01.2008Комплексные числа и комплексные равенства, их алгебраическая и тригонометрическая формы. Арифметические действия над комплексными числами. Целые функции (многочлены) и их свойства. Решение алгебраических уравнений на множестве комплексных чисел.
лекция [464,6 K], добавлен 12.06.2011Комплексные числа в алгебраической форме. Степень мнимой единицы. Геометрическая интерпретация комплексных чисел. Тригонометрическая форма. Приложение теории комплексных чисел к решению уравнений 3-й и 4-й степени. Комплексные числа и параметры.
дипломная работа [1,1 M], добавлен 10.12.2008Учебно-методическое пособие дает возможность изучить необходимые теоретические сведения и получить практические навыки по решению задач, связанных с функциями комплексного переменного. Применение комплексных чисел при решении алгебраических уравнений.
методичка [2,7 M], добавлен 23.12.2009Понятие комплексных чисел, стандартная, матричная и геометрическая модели; действия над комплексными числами; модуль и аргумент. Алгебраическое, тригонометрическое и показательное представление комплексных чисел. Формула Муавра и извлечение корней.
контрольная работа [25,7 K], добавлен 29.05.2012Геометрическое представление комплексных чисел, алгебраическая и тригонометрическая формы. Свойства арифметических операций над комплексными числами: правила сложения (вычитания) их радиус-векторов, произведение (частное) модуля числа; формула Муавра.
презентация [147,4 K], добавлен 17.09.2013Система линейных уравнений. Матричное решение системы уравнений. Геометрический смысл операций с комплексными числами. Элементы аналитической геометрии в пространстве. Классификация функций. Основные элементарные функции. Раскрытие неопределенностей.
шпаргалка [1,1 M], добавлен 12.01.2009Частное решение неоднородных дифференциальных уравнений. Геометрический смысл комплексного числа. Аргумент комплексного числа, его поиск с учетом четверти. Комплексное число в тригонометрической форме, извлечение корня третьей степени, формула Эйлера.
контрольная работа [24,8 K], добавлен 09.09.2009Понятие сходящихся рядов с комплексными числами. Действительные и мнимые части комплексной последовательности. Сумма и разность рядов в комплексными членами. Переход при помощи Эйлера от тригонометрической формы комплексного числа к показательной.
презентация [110,0 K], добавлен 17.09.2013Приближение действительных чисел конечными десятичными дробями. Действия над комплексными числами. Свойства функции и способы ее задания. Тригонометрические функции числового аргумента. Частные случаи тригонометрических уравнений, аксиомы стереометрии.
шпаргалка [2,2 M], добавлен 29.06.2010