Кривые линии и поверхности

Понятие плоской кривой линии, превращение эллипса в окружность при равных осях. Построение параболы и гиперболы. Образование поверхностей вращения линейчатых и нелинейчатых. Особенности поверхностей с плоскостью параллелизма и задаваемых каркасом.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 22.05.2012
Размер файла 1,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1

24

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

«Национальный исследовательский Томский политехнический университет»

Реферат

по инженерной и компьютерной графике

на тему: «Кривые линии и поверхности»

Выполнил: студент

группы 1А01 1 курса ИНК

Иващенко В.Е.

Проверила: доцент кафедры НГГ ИК

Винокурова Г.Ф.

Томск 2011

Содержание

Введение

Плоские кривые линии

Общие сведения о поверхностях

Поверхности вращения линейчатые

Поверхности вращения нелинейчатые

Поверхности с плоскостью параллелизма

Поверхности, задаваемые каркасом

Общий способ построения линии пересечения одной поверхности другою

Некоторые особые случаи пересечения одной поверхности другою

Пространственные кривые линии

Заключение

Список используемой литературы

Введение

Линии занимают особое положение в начертательной геометрии. Используя линии, можно создать наглядные модели многих процессов и проследить их течение во времени. Линии позволяют установить и исследовать функциональную зависимость между различными величинами. С помощью линий удаётся решать многие научные и инженерные задачи, решение которых аналитическим путём часто приводит к использованию чрезвычайно громоздкого математического аппарата.

Линии широко используются при конструировании поверхностей различных технических форм. Внешняя и внутренняя форма деталей радиоаппаратов и автоматических устройств является сочетанием гранных и кривых поверхностей. Поэтому нельзя быть грамотным конструктором, не умея задавать поверхности на чертеже, строить линии их пересечения друг с другом и с плоскостью, делать развертки поверхностей и т. д.

Плоские кривые линии

Кривая линия - это траектория перемещающей точки. Если кривая линия совмещается всеми точками с плоскостью, её называют плоской. Порядком плоской алгебраической кривой считают максимальное число точек её пересечения с прямой линией. К плоским кривым относят все кривые второго порядка. На рис.1 показано построение этих кривых и приведены их канонические уравнения.

Эллипсом является геометрическое место точек М, для которых сумма расстояний до точек F1 и F2 плоскости постоянна и равна большой оси АВ (рис. 1, а). Точки F1 и F2 называют фокусами. Построим точку, принадлежащую эллипсу, если даны фокусы F1, F2 и вершины А, В. Для этого на оси АВ берём произвольную точку L и из фокуса F проводим дугу окружности радиусом АL. Затем из фокуса F2 чертим дугу радиусом ВL, пересекающую первую дугу в точке М. Таким образом,

F1M + F2M = АВ.

При равных осях эллипс превращается в окружность, являющуюся геометрическим местом точек плоскости, равноудалённых от данной точки О (рис. 1, б).

Параболой является геометрическое место точек М, для которых расстояния до точки F плоскости и до прямой KN, не проходящей через точку F, равны (рис. 1, в).

Рис. 1

Вершина О параболы делит расстояние от точки F до прямой KN пополам. Точку F называют фокусом, прямую KN - директрисой. Построим точку М, принадлежащую параболе, если дан фокус F и директриса KN. Для этого проводим прямую LM // KN и из точки F засекаем её дугой окружности радиусом MN. Итак, MN = MF.

Гиперболой является геометрическое место точек М, для которых разность расстояний до точек F1 и F2 плоскости постоянна и равна расстоянию между вершинами А и В кривой (рис. 1, г). Точки F1 и F2 называют фокусами, ось Х - действительной осью, а Y - мнимой.

Общие сведения о поверхностях

Поверхность - это геометрическое место линии, движущейся в пространстве по определённому закону. Эту линию называют образующей. Она может быть прямой, тогда образованную ей поверхность относят к классу линейчатых. Если образующая - кривая линия, поверхность считают нелинейчатой. Линию, по которой перемещают образующую, называют направляющей. В качестве последней иногда используют след поверхности.

Определителем поверхности называют совокупность условий, задающих поверхность в пространстве.

Поверхность считают заданной, если можно построить проекции любой её образующей. Одну и ту же поверхность можно образовать движением различных линий. Например, сфера образуется вращением окружности вокруг её диаметра.

Рассматриваемые ниже поверхности классифицированы следующим образом.

I. Поверхности вращения линейчатые.

Конус.

Цилиндр.

Однополостный гиперболоид.

II. Поверхности вращения нелинейчатые.

Шар.

Тор (круговой, параболический, эллиптический).

Эллипсоид (вытянутый и сжатый).

Двуполостный гиперболоид.

Параболоид.

Поверхность вращения общего вида.

III. Поверхности с плоскостью параллелизма.

1. Цилиндроид.

Коноид (геликоид).

Гиперболический параболоид.

IV. Поверхности, задаваемые каркасом.

Поверхности вращения линейчатые

Все поверхности этого класса образованы вращением прямой линии вокруг другой прямой. Две прямые могут занимать относительно друг друга три различных положения. Каждому из них соответствует своя поверхность вращения.

1. Конус образуют вращением прямой OD вокруг пересекающейся с ней оси Z (рис. 2, а). Координатные плоскости XOZ и YOZ рассекают конус по пересекающимся прямым OD, OE, OK и OF; плоскость XOZ даёт в сечении точку О; плоскость, параллельная XOY, пересекает по окружности (DFEK).

Рис. 2. а)

Для построения точки, принадлежащей кривой поверхности, её поверхности располагаем на проекциях линии, лежащей на этой поверхности.

Конус участвует в образовании формы диаграммы направленности антенны, поверхности положения объекта в пространстве, антенны и её облучателя, диффузора громкоговорителя, резонатора, отражателя радиоволн, электроннолучевых трубок и электронных ламп, световода, деталей вакуумных установок и так далее.

2. Цилиндр образуют вращением прямой ЕD вокруг параллельной ей оси Z (рис. 2, б, в)

Рис. 2. б) в)

Плоскости XOZ и YOZ пересекают его по параллельным прямым ED, FK, NP, LM, а плоскость XOY и ей параллельные - по окружностям DPKM и (ENFL).

Цилиндр применяют при образовании формы волноводов, антенн, амортизаторов приборов, зеркал лазеров, корпусов датчиков и так далее.

3. Однополостный гиперболоид образуют вращением прямой ED вокруг скрещивающейся с ней оси Z (рис. 3).

Рис. 3

Плоскости XOZ и YOZ пересекают его по гиперболам FK, LM, PQ и RS, а плоскость XOY и ей параллельные - по окружностям (GU, FPLR и KQMS). При вращении точек D и Е их проекции d и е перемещаются по окружности, а проекции d и e - по прямым, параллельным оси Х. Точка U прямой DE, ближе других расположенная к оси вращения, описывает окружность UU1 наименьшего диаметра. Эту окружность называют горлом поверхности. Лучи, проектирующие какую-либо поверхность, касаются её в точках, образующих контурную линию. Соответствующая проекция этой линии называется очерком поверхности.

Форму однополостного гиперболоида имеют некоторые радиомачты. Он также образует форму вибрационных питателей, используемых в промышленной автоматике, кулачков, соединителей контактов и так далее.

Поверхности вращения нелинейчатые
К этому классу относят в основном поверхности, образованные вращением кривых второго порядка.
1. Сферу образуют вращением окружности вокруг её диаметра (рис. 4). Любая плоскость пересекает сферу по окружности. Очерк фронтальной проекции сферы называют главным меридианом, очерк горизонтальной проекции - экватором. Проекции точки К, лежащей на поверхности сферы, принадлежат проекциям горизонтальной окружности, проведённой на сфере.

Рис. 4

Сфера образует форму диаграммы направленности антенн, обтекателя и излучателя антенны, головки микрофона, контактов реле и так далее. Сфера является поверхностью положения объекта в пространстве.

2. Круговой тор образуют вращением окружности вокруг оси, лежащей в плоскости этой окружности и не являющейся её диаметром. Таким образом, сферу можно рассматривать как частный случай тора. Различают тор-кольцо, когда ось вращения не пересекает образующую окружность, и тор-бочку.

В радиотехнике используют также параболический и эллиптический тор.

Параболический тор образуют вращением параболы вокруг прямой, лежащей в плоскости этой параболы и не являющейся её фокальной осью.

Эллиптический тор образуют вращением эллипса вокруг прямой, лежащей в плоскости этого эллипса и не являющейся его осью.

Торовые поверхности имеют диаграммы направленности антенн, поверхности положения объекта в пространстве, антенны и их обтекатели, волноводы, резонаторы, громкоговорители и так далее.

3. Эллипсоид образуют вращением эллипса вокруг его малой или большой оси. В первом случае получают сжатый (рис. 5, а), а во втором - вытянутый эллипсоиды вращения (рис. 5, б).

Рис. 5 а) б)

Плоскости XOZ и YOZ пересекают их по эллипсам DE и EF, а плоскость XOY - по окружности DF.

Форму эллипсоида имеют зеркала антенн и лазеров, излучатели антенн, поверхности положения и так далее.

4. Двуполостный гиперболоид образуют вращением гиперболы DE вокруг её действительной оси FF1 (рис. 6).

Рис. 6

Плоскости XOZ и YOZ пересекают его по гиперболам DE и KE; плоскость XOY даёт в сечении мнимую точку О.

Форму его имеют зеркала антенн, поверхности положения объекта в пространстве и так далее.

5. Параболоид образуют вращением параболы OD вокруг её фокальной оси OF (рис. 7).

Рис. 7

Зеркала антенн и лазеров чаще всего изготовляют параболическими.

6. Поверхность вращения общего вида образуют вращением произвольной кривой.

Поверхности с плоскостью параллелизма

Все поверхности этого класса - линейчатые.

1. Цилиндроид образуют перемещением прямой по двум кривым направляющим, когда образующая остаётся параллельной заданной плоскости. Форму цилиндроида имеют некоторые объёмные графики, применяемые в теории оптимального регулирования, а также волноводы.

2. Коноид образуют перемещением прямой по кривой линии и прямой, когда образующая остаётся параллельной заданной плоскости. Частным случаем коноида является прямой геликоид, образуемый перемещением прямой по винтовой линии и её оси, когда образующая остаётся параллельной заданной плоскости.

3. Гиперболический параболоид или косую плоскость образуют перемещением прямой по двум скрещивающимся прямым, когда образующая остаётся параллельной некоторой плоскости. Получаемая поверхность имеет седлообразную форму (рис. 8).

Рис. 8

Плоскости XOZ и YOZ пересекают эту поверхность по параболам OD и OE; плоскости параллельные XOZ и YOZ,также дают в сечении параболы; плоскость XOZ пересекает поверхность по двум пересекающимся прямым OL и OK, а плоскости, параллельные XOZ,- по гиперболам (EN и DM).

Поверхности, задаваемые каркасом

К ним относятся поверхности, образование которых не подчинено определённому геометрическому закону. Эти поверхности задают каркасом - семейством линий, принадлежащих им и параллельных координатным плоскостям (рис. 9).

Рис. 9
На рис. 9 изображён объёмный график, используемый в радиотехнике. Поверхность определена кривыми линиями, одно семейство которых (CD) параллельно плоскости XOZ, а другое (АВ) - плоскости YOZ. Точка М поверхности определена как точка пересечения кривых АВ и CD.
В радиоэлектронике и автоматике встречаются поверхности второго порядка общего вида: эллиптические конус и цилиндр, параболический и гиперболический цилиндры и так далее.
Общий способ построения линии пересечения одной поверхности другою
Общим способом построения линии пересечения одной поверхности другою является нахождения точек этой линии при помощи некоторых секущих поверхностей (для линий пересечения применяется также название «линии перехода», особенно в тех случаях, когда при переходе от одной поверхности к другой нет ярко выраженного пересечения. Для вспомогательных секущих поверхностей встречается название «посредники»). На рисунке 10 слева показано, что поверхности I и II пересечены некоторой поверхностью III; эта вспомогательная поверхность пересекает поверхность I по линии АВ, а поверхность II - по линии CD. Точка К, в которой пересекаются линии АВ и CD, общая для поверхностей I и II, следовательно, принадлежит линии их пересечения. Повторяя такой приём, получаем ряд точек искомой линии.
Применяя указанный общий способ для построения линии пересечения двух кривых поверхностей, мы можем:
1) пересекать поверхности вспомогательными плоскостями;
2) пересекать поверхности вспомогательными кривыми поверхностями (например, сферами).
Рис. 10
В некоторых случаях при решении задач комбинируют применение вспомогательных плоскостей и кривых поверхностей. Следует по возможности подбирать такие вспомогательные поверхности, которые в пересечении с данными поверхностями дают простые для построения линии (например, прямые или окружности).
В общем случае вспомогательные секущие плоскости применяют и для построения линии пересечения кривой поверхности гранной.
Изложенный общий способ построения линии пересечения одной поверхности другою не исключает применения другого способа, если хотя бы одна из этих поверхностей линейчатая: найти точку, в которой прямолинейная образующая одной поверхности пересекает другую поверхность, и, повторяя этот приём для ряда образующих, через найденные точки провести искомую линию. На рисунке 10 справа показано, что через образующую SM поверхности I проведена плоскость III, которая пересекает вторую поверхность (II) по кривой CD; образующая SM пересекает эту кривую в точке К, через которую пройдёт искомая линия пересечения поверхностей I и II.
Это относится и к случаю пересечения кривой поверхности гранной: здесь роль образующих играют ребра гранной поверхности.
Итак, для построения точек линии, получающейся на одной поверхности при пересечении её другой поверхностью, пользуются вспомогательными секущими плоскостями частного и общего положения, кривыми поверхностями, прямолинейными образующими кривых линейчатых поверхностей и рёбрами гранных поверхностей. При этом прибегают к способам преобразования чертежа, если это упрощает и уточняет построение.
При построении точек линии пересечения сначала следует найти те точки, которые обычно называют характерными (для них также применяется название «опорные»). Это точки, проекции которых отделяют видимую часть проекции линии пересечения от невидимой, это проекции точек линии пересечения, наивысших и наинизших по отношению к плоскости р1, ближайших и наиболее удалённых по отношению к зрителю, крайних слева и справа на проекциях линии пересечения.
Некоторые особые случаи пересечения одной поверхности другою
кривой линия парабола поверхность
1. На рисунке 11 изображены пересекающиеся между собой: а) два цилиндра с параллельными образующими, б) два конуса с общей вершиной. В обоих случаях линиями пересечения поверхностей являются общие образующие этих поверхностей.
Положим, что надо построить проекции прямой, проходящей через точку В на оси проекций и расположенной под углом ц1 по отношению к плоскости р1 и под углом ц2 к плоскости р 2. Известно, что для прямой общего положения ц1+ц2<90градусов.
Геометрическим местом прямых, проходящих через данную точку и составляющих с плоскостью р1 угол ц1, является коническая поверхность вращения, вершина которой находится в данной точке, а образующие составляют с плоскостью р1 угол ц1.
Рис. 11
Точно также геометрическим местом прямых, проходящих через данную точку и составляющих с плоскостью р2 угол ц2, является коническая поверхность вращения, вершина которой находится в данной точке, а образующие составляют с плоскостью р2 угол ц2.
Очевидно, искомая прямая должна одновременно принадлежать поверхностям обоих конусов, имеющих общую вершину в данной точке, т.е. должна быть линией их пересечения - общей их образующей. Мы получим восемь лучей, выходящих из точки В, отвечающих поставленным условиям (четыре прямых).
На рисунке 12 выполнено построение одного из этих лучей. Первый конус определяется образующей ВА1 и осью, перпендикулярной к плоскости р1, а второй конус - образующей ВА2 и осью, перпендикулярной к плоскости р2. Для построения искомой прямой имеется пока лишь точка В - общая вершина конусов. Вторую точку - точку К - общую для поверхностей этих конусов, мы находим при помощи сферы с центром в точке В.
Рис. 12
Другим примером, когда в процессе некоторого построения используется свойство пересечения двух конических поверхностей с общей вершиной по общей для них прямой линии - образующей, служит построение образующих линейчатой поверхности, называемой цилиндром с тремя направляющими. Положим (рис.13), что в числе направляющих одна прямая АВ и две кривые линии. Если взять точку (К) на прямой направляющей и принять её в качестве общей вершины вспомогательных конических поверхностей, для которых данные кривые служат направляющими, то прямая пересечения этих конических поверхностей, проходя через их вершину, пересечет и их направляющие, то есть окажется прямолинейной образующей цилиндра с тремя направляющими. Очевидно, надо взять ряд точек заданной прямой и выполнить для каждой из них указанное построение, что даст ряд образующих цилиндра с тремя направляющими.
Если для этой поверхности все три направляющие кривые, то указанный способ построения остаётся таким же: точки, служащие вершинами для вспомогательных конических поверхностей, берутся на одной из данных кривых.
2. При взаимном пересечении поверхностей вращения второго порядка получается в некоторых случаях распадения линии пересечения на две плоские кривые второго порядка. Это бывает в тех случаях, когда обе пересекающиеся поверхности вращения (цилиндр и конус, два конуса, эллипсоид и конус и т. п.) описаны вокруг общей для них сферы. В примерах, приведённых на рис. 13, в первых трёх случаях пересечения происходит по эллипсам, в четвёртом - по эллипсу и параболе, а в пятом - по эллипсу и гиперболе.
Рис. 13
На рис. 14 показаны два цилиндра равного диаметра с пересекающимися осями. Из точки пересечения осей может быть проведена сфера, вписанная в оба цилиндра. Обе поверхности пересекаются по линии, состоящей из двух эллипсов. На рис. 14 справа также изображены два цилиндра равного диаметра, но их оси пересекаются на этот раз не под прямым углом. Линия пересечения составлена из половин двух эллипсов.
Изображённые на рис. 13 и 14 кривые пересечения поверхностей проецируются на фронтальную плоскость проекций в виде прямолинейных отрезков, так как общая плоскость симметрии для каждой пары рассмотренных поверхностей расположена параллельно плоскости р2.
Рис. 14
В рассмотренных примерах имеет место двойное соприкосновение двух пересекающихся поверхностей второго порядка, то есть наличие у этих поверхностей двух точек прикосновения, а следовательно, и двух плоскостей, каждая из которых касается обеих поверхностей в общей их точке. Приведём без доказательств следующие два положения, на которых основаны указанные выше построения: 1) поверхности второго порядка, имеющие двойное соприкосновение, пересекаются между собой по двум кривым второго порядка, причём плоскости этих кривых проходят через прямую, определяемую точками прикосновения; 2) две поверхности второго порядка, описанные около третьей поверхности второго порядка (или в неё вписанные (например, два сжатых эллипсоида вращения, вписанных в сферическую поверхность)), пересекаются между собой по двум кривым второго порядка. Второе положение, известное под названием теоремы Монжа, вытекает из первого.
Рис. 15
На основании изложенного можно найти круговые сечения эллиптического конуса и эллиптического цилиндра. Пример дан на рис. 15. Взята некоторая сфера так, чтобы она имела двойное соприкосновение с поверхностью эллиптического конуса. В пересечении сферы с конусом получаются две плоские кривые - окружности в профильно-прецирующих плоскостях г и б, дают две системы круговых сечений эллиптического конуса.
3. Соосные поверхности вращения (т. е. поверхности с общей осью) пересекаются по окружностям. На рис. 16 даны три примера: а) цилиндр и конус, б) сжатый эллипсоид и усечённый конус, в) две сферы. Во всех этих примерах даны лишь фронтальные проекции, причем общая ось поверхностей расположена параллельно плоскости р2. Поэтому окружности, получаемые при пересечении одной поверхности другою, проецируются на р2 в виде прямолинейных отрезков.
Рис. 16
За ось сферы можно принять любой её диаметр. Поэтому пересекающиеся сферы рассматриваются как соосные поверхности вращения. Также в качестве соосных поверхностей могут быть рассмотрены изображенные на рис. 16 цилиндр и сфера, конус и сфера, некоторая поверхность вращения и сфера. Оси цилиндра, конуса и поверхности вращения проходят через центры сфер. Пересечение происходит по окружностям.
На рис. 17 даны примеры изображения соосных поверхностей вращения и встречных сверлений одного и того же диаметра из практики машиностроительного черчения. Поверхности обозначены буквами: Т - круговое кольцо, К - конус, Ц - цилиндр, Сф - сфера; полученные в пересечении линии обозначены буквами: О - окружность, Э - эллипс. Эти линии проецируются в виде прямолинейных отрезков, тук Кук оси поверхностей параллельны плоскости проекций (в данном случае плоскости р2).
Рис. 17
Пространственные кривые линии
Если кривую линию без её деформации нельзя совместить всеми точками с плоскостью, то её называют пространственной. К таким кривым относят винтовые линии.
Винтовая линия - это траектория движения точки, равномерно перемещающейся вдоль образующей, которая равномерно вращается вокруг оси этой поверхности. Винтовую линию называют правой, если на видимой стороне поверхности она идёт слева вверх направо (рис. 18, а); в противном случае её называют левой (рис. 18, б).
Расстояние S, которое проходит точка вдоль образующей за один её оборот, называют шагом винтовой линии. Построение всех винтовых линий однотипно.

Рис. 18. а) б)

Заключение

В результате нашего исследования мы:

· Расширили свои представлении о взаимном расположении поверхностей в пространстве

· Изучили возможные фигуры пересечения поверхностей в пространстве

· Научились строить линии пересечения кривых поверхностей

Список используемой литературы

1. Анисимов И.К. Конспекты лекций по начертательной геометрии. - Р. 1970.

2. Фролов С.А. Начертательная геометрия: учебник для вузов. - М.: Машиностроение, 1983.

3. Гильберт. Д. Наглядная геометрия. - М.: Наука, 1981.

4. Гордон В.О. Курс начертательной геометрии. - М.: Наука, 1988.

Размещено на Allbest.ru


Подобные документы

  • Способы формообразования и отображения поверхностей. Закон образования поверхности. Основные свойства, вытекающие из закона образования поверхности вращения. Линейчатые поверхности с плоскостью параллелизма. Образование каркаса циклических поверхностей.

    реферат [2,0 M], добавлен 19.05.2014

  • Математическое понятие кривой. Общее уравнение кривой второго порядка. Уравнения окружности, эллипса, гиперболы и параболы. Оси симметрии гиперболы. Исследование формы параболы. Кривые третьего и четвертого порядка. Анъези локон, декартов лист.

    дипломная работа [877,9 K], добавлен 14.10.2011

  • Общее уравнение кривой второго порядка. Составление уравнений эллипса, окружности, гиперболы и параболы. Эксцентриситет гиперболы. Фокус и директриса параболы. Преобразование общего уравнения к каноническому виду. Зависимость вида кривой от инвариантов.

    презентация [301,4 K], добавлен 10.11.2014

  • Представление о взаимном расположении поверхностей в пространстве. Линейчатые и нелинейчатые поверхности вращения. Пересечение кривых поверхностей. Общие сведения о поверхностях. Общий способ построения линии пересечения одной поверхности другою.

    реферат [5,4 M], добавлен 10.01.2009

  • Подробный анализ поверхностей Каталана и условия, отделяющие этот класс от класса линейчатых поверхностей. Формулы для расчета первой и второй квадратичных форм поверхностей класса КА. Доказательство утверждений о влиянии вида кривых на тип поверхности.

    дипломная работа [1,4 M], добавлен 06.06.2011

  • Кривая и формы поверхности второго порядка. Анализ свойств кривых и поверхностей второго порядка. Исследование форм поверхности методом сечений плоскостями, построение линии, полученной в сечениях. Построение поверхности в канонической системе координат.

    курсовая работа [132,8 K], добавлен 28.06.2009

  • Понятие матрицы, эллипса, гиперболы и параболы. Системы уравнений с матрицами. Проекция вектора на ось и действия с векторами. Плоскость и прямые линии в пространстве, их взаимное расположение. Прямоугольная декартова система координат на плоскости.

    контрольная работа [98,8 K], добавлен 30.11.2010

  • Характеристика семейства поверхностей. Касательная прямая и плоскость. Криволинейные координаты. Вычисление длины дуги кривой на поверхности и ее площади. Угол между двумя линиями на поверхности. Нормальная кривизна линий, расположенных на поверхности.

    дипломная работа [2,0 M], добавлен 18.05.2013

  • Определение алгебраической линии на плоскости. Теорема о независимости порядка линии от выбора аффиной системы координат. Классификация алгебраической линии. Понятие алгебраической линии на плоскости и окружности как составляющих метода координат.

    курсовая работа [197,3 K], добавлен 29.09.2014

  • "Конические сечения" Аполлония. Вывод уравнения кривой для сечения прямоугольного конуса вращения. Вывод уравнения для параболы, для эллипса и гиперболы. Инвариантность конических сечений. Дальнейшее развитие теории конических сечений в трудах Аполлония.

    реферат [174,6 K], добавлен 04.02.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.