Тройной интеграл и его вычисление
Понятие и свойства тройного интеграла, его использование в решении прикладных задач. Вычисление тройного интеграла в декартовых, сферических, цилиндрических координатах. Нахождение площадей, ограниченных кривыми, и объемов, ограниченных поверхностями.
Рубрика | Математика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 21.05.2012 |
Размер файла | 377,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования и науки Республики Казахстан
Кокшетауский государственный университет имени Ш. Уалиханова
Курсовая работа
На тему: Тройной интеграл и его вычисление
Выполнил: Кажкенова М.Ш.
Специальность: 5В010900-Математ
Группа МР-22
Руководитель: Пахомова Л.Ф
Кокшетау 2012
Содержание
Введение
1. Теоретические основы вычисления тройного интеграла
1.1 Вычисление тройного интеграла в декартовых координатах
1.2 Вычисление тройного интеграла в цилиндрических координатах
1.3 Вычисление тройного интеграла в сферических координатах
1.4 Применение тройных интегралов
2. Решение задач с использованием тройного интеграла
Заключение
Список использованной литературы
Введение
Символ интеграла введен с 1675 г., а вопросами интегрального исчисления занимаются с 1696 г. Интеграл изучают, в основном, ученые-математики, также и физики внесли свой вклад в эту науку. Практически ни одна формула физики не обходится без дифференциального и интегрального исчислений. Интегральное исчисление, вместе с исчислением дифференциальным, составляет основу математического анализа. Интегральным исчислением называют раздел математики, занимающийся изучением интегралов, их свойств и методов вычисления. Аппарат дифференциального и интегрального исчисления составляет основу математического анализа, который широко используется в различных отраслях современной науки.
Интегральное исчисление появилось во времена античного периода развития математической науки и началось с метода исчерпывания, который был разработан математиками Древней Греции, и представлял собой набор правил, разработанных Евдоксом Книдским. По этим правилам по которым вычисляли площадей и объёмы. Далее метод получил своё развитие в работах Евклида. Особым искусством и разнообразием применения метода исчерпывания прославился Архимед.
С 70-х годов XVIII века решение задач аналитической механики, физики и других дисциплин потребовало продолжения развития понятия и употребления определенного интеграла, особое значение приобретают двойные и тройные интегралы (Эйлер, Лагранж, Лаплас и др.).
Эта эпоха математического творчества оказалась единственной по своей интенсивности, а Эйлер - одним из немногих по своей продуктивности учёным. Его творения: "Введение в анализ бесконечно малых", "Основания дифференциального исчисления" и "Основания интегрального исчисления" стали первыми трактатами, которые объединили уже обширный, но вместе с тем разрозненный материал нового анализа в цельную науку. В них была разработана та основа современного анализа, которая сохранилась и до нашего времени.
Исследование методов вычисления двойных и тройных интегралов показала, что вычисление этих интегралов методом вычисления обычного определенного интеграла - при помощи неопределенного, невероятно трудно, поэтому математики сохранили концепцию Ньютона только на словах, а на деле, при решении задач точных наук, приняли сторону Лейбница. Так они вычисляли соответствующие интегральные суммы (в прямоугольных, цилиндрических и сферических координатах) и находили их пределы.
Актуальность: изучение тройного интеграла очень актуально в наше время. Практически ни одна формула математики и физики не обходится без дифференциального и интегрального исчислений.
Задача: изучить актуальность применения тройного интеграла и оценить его практическую и теоретическую значимость.
Цель: раскрытие методов решения тройного интеграла.
Курсовая работа состоит из 2 глав. В первой главе рассмотрено основное понятие тройного интеграла, а также вычисление тройного интеграла в сферических, цилиндрических, декартовых координатах. Во второй главе показаны примеры решения задач на нахождение тройного интеграла.
1. Теоретические основы вычисления тройного интеграла
Рассмотрим тело, занимающее пространственную область (рис. 1), и предположим, что плотность распределения массы в этом теле является непрерывной функцией координат точек тела:
Единица измерения плотности - кг/м3.
Рис. 1
Разобьем тело произвольным образом на n частей; объемы этих частей обозначим Выберем затем в каждой части по произвольной точке Полагая, что в, каждой частичной области плотность постоянна и равна ее значению в точке , мы получим приближенное выражение для массы всего тела в виде суммы
Предел этой суммы при условии, что и каждое частичное тело стягивается в точку (т. е. что его диаметр) стремится к нулю), и даст массу М тела
Сумма (*) называется n-й интегральной суммой, а ее предел - тройным интегралом от функции по пространственной области .
К вычислению тройного интеграла, помимо определения массы тела, приводят и другие задачи. Поэтому в дальнейшем мы будем рассматривать тройной интеграл
где - произвольная непрерывная в области функция.
Терминология для тройных интегралов совпадает с соответствующей терминологией для двойных интегралов. Точно так же формулируется и теорема существования тройного интеграла.
Свойства двойных интегралов, полностью переносятся на тройные интегралы. Заметим только, что если подынтегральная функция тождественно равна 1, то тройной интеграл выражает объем V области :
Потому свойства 1 и надо теперь сформулировать следующим образом.
1) Если функция во всех точках области интегрирования удовлетворяет неравенствам
то
где V - объем области .
2) Тройной интеграл равен произведению значения подынтегральной функции в некоторой точке области интегрирования на объем области интегрирования, т. е.
1.1 Вычисление тройного интеграла в декартовых координатах
Пусть дан тройной интеграл от функции
причем область отнесена к системе декартовых координат Oxyz, Разобьем область интегрирования и плоскостями, параллельными координатным плоскостям. Тогда частичными областями будут параллелепипеды с гранями, параллельными плоскостям Оху, Охz, Оуz. Элемент объема будет равен, произведению дифференциалов переменных интегрирования
В соответствии с этим будем писать
Установим теперь правило для вычисления такого интеграла.
Будем считать, что область интегрирования имеет вид, изображенный на рис. 1.
Опишем около и цилиндрическую поверхность с образующей, перпендикулярной к плоскости Оху. Она касается области вдоль некоторой линии L, которая делит поверхность, ограничивающую область, на две части: верхнюю и нижнюю. Уравнением нижней поверхности пусть будет , уравнением верхней .
Построенная цилиндрическая поверхность высекает из плоскости Оху плоскую область D, которая является ортогональной проекцией пространственной области на плоскость Оху, при этом линия L проектируется в границу области .
Будем производить интегрирование сначала по направлению оси Оz. Для этого функция интегрируется по заключенному в отрезку прямой, параллельной оси Оz и проходящей через некоторую точку Р(х, у) области D (на рис. 1 отрезок ). При данных х и у переменная интегрирования z будет изменяться от - аппликаты точки “входа” () прямой в область , до - аппликаты точки “выхода” () прямой из области .
Результат интегрирования представляет собой величину, зависящую от точки Р (х, у); обозначим ее через F(х, у):
При интегрировании х и у рассматриваются здесь как постоянные.
Мы получим значение искомого тройного интеграла, если возьмем интеграл от функции F(х, у) при условии, что точка Р(х, у) изменяется по области D, т. е. если возьмем двойной интеграл
Таким образом, тройной интеграл I может быть представлен в виде
Приводя, далее, двойной интеграл по области D к повторному и интегрируя сначала по y, а затем по x, получим:
где и - ординаты точек “входа” в область D и “выхода” из нее прямой (в плоскости Оху), а a и b - абсциссы конечных точек интервала оси Ох, на который проектируется область D.
Мы видим, что вычисление тройного интеграла по области производится, посредством трех последовательных интегрирований.
Формула (*) сохраняется и для областей, имеющих цилиндрическую форму, т. е. ограниченных цилиндрической поверхностью с образующими, параллельными оси Оz, а снизу и сверху поверхностями, уравнения которых соответственно и (рис. 2).
Рис. 2
Если областью интегрирования служит внутренность параллелепипеда с гранями, параллельными координатным плоскостям (рис. 3), то пределы интегрирования постоянны во всех трех интегралах :
В этом случае интегрирование можно производить в любом порядке, пределы интегрирования будут при этом сохраняться.
Если же в общем случае менять порядок интегрирования (т.е., скажем, интегрировать сначала по направлению оси Oy, а затем по области плоскости Oxz), то это приведёт к изменению порядка интегрирования в тройном интеграле и к изменению пределов интегрирования по каждой переменной.
Рис. 3 Рис. 4
1.2 Вычисление тройного интеграла в цилиндрических координатах
Отнесём область к системе цилиндрических координат , в которой положение точки M в пространстве определяется полярными координатами ее проекции Р на плоскость Oxy и ее аппликатой (z). Выбирая взаимное расположение осей координат, как указано на рис. 5, установим связь, между декартовыми и цилиндрическими координатами точки М, именно:
Рис. 5
Разобьем область на частичные области тремя системами координатных поверхностей: которыми будут соответственно круговые цилиндрические поверхности, осью которых является ось Оz, полуплоскости, проходящие через ось Оz, и плоскости, параллельные плоскости Оху. Частичными областями служат прямые цилиндры MN (рис. 5). Так как объем цилиндра MN равен площади основания, умноженной на высоту, то для элемента объема получаем выражение
Преобразование тройного интеграла к цилиндрическим координатам производится совершенно аналогично преобразованию двойного интеграла к полярным. Для этого нужно в выражении подынтегральной функции переменные x, y, z заменить по формулам (*) и взять элемент объёма равным
Получим
Если, в частности, то интеграл выражает объём V области
Вычисление тройного интеграла в цилиндрических координатах приводится к интегрированиям по r, по и по z на основании тех же принципов, что и в случае декартовых координат. В частности, если областью интегрирования служит внутренность цилиндра то пределы трехкратного интеграла постоянны и не меняются при перемене порядка интегрировании.
1.3 Вычисление тройного интеграла в сферических координатах
Отнесём теперь область интегрирования к системе сферических координат . В этой системе координат положение точки M в пространстве определяется её расстоянием r от начала координат (длина радиуса-вектора точки), углом между радиусом-вектором точки и осью Oz и углом между проекцией радиуса вектора точки на плоскость Oxy и осью Ox (рис. 6). При этом может изменятся то 0 до а - от 0 до .
Рис. 6
Связь между сферическими и декартовыми координатами легко устанавливается. Из рис.6 имеем
Отсюда
Разобьем область на частичные области , тремя системами координатных поверхностей: которыми будут соответственно сферы с центром в начале координат, полуплоскости, проходящие, через ось Оz, и конусы с вершиной в начале координат и с осями, совпадающими с одной из полуосей Оz. Частичными областями служат “шестигранники” (рис. 7).
Отбросив бесконечно малые высших порядков, будем рассматривать шестигранник MN как прямоугольный параллелепипед с измерениями, равными: по направлению полярного радиуса, по направлению меридиана, по направлению параллели. Для элемента объема мы получим тогда выражение
Заменив в тройном интеграле по формулам (**) и взяв элемент объема равным полученному выражению, будем иметь
Особенно удобно применение сферических координат в случае, когда область интегрирование - шар с центром в начале координат или шаровое кольцо. Например, в последнем случае, если радиус внутреннего шара , а внешнего , пределы интегрирования следует расставить так:
Если - шар, то нужно положить
1.4 Применение тройных интегралов
Для вычисления координат центра тяжести тела нужны статические моменты относительно координатных плоскостей Оху, Охz, Оуz; обозначим их соответственно Повторяя рассуждения получим следующие формулы для координат центра тяжести неоднородного тела, плотность которого задается функцией занимающего область :
Если тело однородно, т. е. , то формулы упрощаются:
где V- объём тела.
Пример. Найдем центр тяжести однородного полушара :
Две координаты центра тяжести равны нулю, ибо полушар симметричен относительно оси Оz (тело вращения с осью Оz).
Интеграл удобно вычислить, перейдя к сферическим координатам:
Так как объём полушара равен то
Перейдём к вычислению моментов инерции тела относительно координатных осей. Так как квадраты расстояний от точки P(x, y, z) до осей Ox, Oy, Oz соответственно равны то полагая для простоты получим следующие формулы :
Аналогично плоскому случаю интегралы
- называются центробежными моментами инерции.
Для полярного момента инерции формула имеет вид:
Если тело неоднородное, то в каждой формуле под знаком интеграла будет находиться дополнительный множитель - плотность тела в точке P.
Пример. Вычислим полярный момент инерции однородного шара радиуса R. В этом случае очень удобно перейти к сферическим координатам. Будем иметь
где М - масса шара.
Так как для сферы моменты инерции относительно осей координат, очевидно, равны между собой, то, учитывая, что
получим
Моменты инерции тела относительно оси играют важную роль при вычислении кинетической энергии тела при его вращении около соответствующей оси. Пусть тело вращается около оси Оz с постоянной угловой скоростью . Найдем кинетическую энергию тела. Как известно, кинетическая энергия точки измеряется величиной , где т - масса точки, а - величина ее скорости. Кинетическая энергия системы точек определяется как сумма кинетических энергий отдельных точек, а кинетическая энергия тела - как сумма кинетических энергий всех частей, на которые оно разбито. Это обстоятельство позволяет применить для вычисления кинетической энергии интеграл.
Возьмем какую-нибудь окрестность точки Р(х, у, z) тела . Величина линейной скорости точки Р при вращении около оси Оz равна и значит, кинетическая энергия части тела выразится так :
где - плотность тела в точке Р. Для кинетической энергии всего тела получаем
т.е.
Кинетическая энергия тела, вращающегося около некоторой оси с постоянной угловой скоростью, равна половине квадрата угловой скорости, умноженной на момент инерции тела относительно оси вращения.
2. Решение задач с использованием тройного интеграла
тройной интеграл декартовый координата
1) Вычислить тройной интеграл:
если область T ограничена поверхностями
z = 0 и (z - 1)2 = x2 + y2.
Решение.
Область T представляет собой конус (см. Рис. 8, а).
Рис. 8
Уравнение конической поверхности, ограничивающей область T, можно записать в виде, а саму область T представить следующим образом
,
где G - круг радиуса 1 с центром в начале координат. Поэтому данный тройной интеграл можно свести к последовательному вычислению трех определенных интегралов в прямоугольных координатах:
Однако удобнее перейти к цилиндрическим координатам (с, ц, z): x = с cos ц, y = с sin ц, z = z. Тогда прообраз круга G есть прямоугольник {(с, ц): 0 ? с ? 1, 0 ? ц ? 2р}, прообраз конической поверхности - плоская поверхность z = 1 - с, прообраз области T - область ф, изображенная на Рис. 1, б. Якобиан перехода к цилиндрическим координатам равен с, подынтегральная функция в цилиндрических координатах равна с2(1 + sin2ц) - z. Сводя тройной интеграл по области ф к последовательному вычислению трех определенных интегралов, получим,
Отметим, что расстановку пределов интегрирования в цилиндрических координатах можно произвести, рассматривая не область ф, а изменение цилиндрических координат в области T. Наглядно видно, что в области G переменная ц изменяется от 0 до 2р, при каждом значении ц переменная с изменяется от 0 до 1, а для каждой точки (с, ц) области G переменная z изменяется в области T от 0 (значение z в области G) до (значение z на конической поверхности). Это позволяет расставить пределы интегрирования так, как сделано в равенстве (*).
2) Вычислим тройной интеграл
где - область, ограниченная координатными плоскостями и плоскостью (пирамида, изображённая на рис.4).
Интегрирование по z совершается от z=0 до Поэтому, обозначая проекцию области на плоскость Oxy через D, получим
Расставим теперь пределы интегрирования по области D - треугольнику, уравнения сторон которого
3)Вычислить интеграл
Решение. Найдем последовательно все три интеграла:
4) Найти интеграл
,
где область интегрирования U ? шар, заданный уравнением
x2 + y2 + z2 = 25.
Решение:
Поскольку область U представляет собой шар, и к тому же подынтегральное выражение является функцией, зависящей от f (x2 + y2 + z2), то перейдем к сферическим координатам. Сделаем замену:
Новые переменные изменяются в пределах:
Учитывая якобиан с2sin и, записываем интеграл в виде:
5) Вычислить интеграл
где область U представляет собой единичный шар
x2 + y2 + z2 ? 1.
Решение:
Центр данного шара расположен в начале координат. Следовательно, в сферических координатах область интегрирования U описывается неравенствами
Записывая интеграл в сферических координатах, получаем
Как видно, тройной интеграл вырождается в произведение трех однократных интегралов, каждый из которых вычисляется независимо. В результате находим:
Заключение
В данной работе мы рассмотрели понятие тройного интеграла и его вычисление, а также их применение к решению прикладных задач. С помощью тройных интегралов изложено нахождение площадей, ограниченных различными кривыми, объёмов, ограниченных различными поверхностями, в том числе нахождение площадей и объёмов тел вращения. Рассмотрены вычисления тройного интеграла в декартовых, сферических, цилиндрических координатах. Представлены некоторые механические приложения для тройного интеграла: нахождение статических моментов, координат центра тяжести кривой, массы тела. Приведены физические приложения, например, важная роль моментов инерции тела относительно оси при вычислении кинетической энергии тела при его вращении около соответствующей оси. В работе приведены свойства тройных интегралов. Показаны примеры решения задач на нахождение тройного интеграла.
Список использованной литературы
1. А.Ф. Бермант, И.Г. Араманович. Краткий курс математического анализа для втузов: Учебное пособие для втузов: - М.: Наука, Главная редакция физико-математической литературы, 1971 г. 736 с.
2. Б.П. Демидович. Задачи и упражнения по математическому анализу: Учебное пособие для втузов. М.: Наука, Главная редакция физико-математической литературы, 1970 г. 248 с.
Размещено на Allbest.ru
Подобные документы
Специфика декартовых координат и способ их использования при вычислении двойного интеграла, сведенного к повторному интегрированию. Примеры решения задач и особенности определения тройного интеграла в системе цилиндрических и сферических координат.
презентация [69,7 K], добавлен 17.09.2013История интегрального исчисления. Определение и свойства двойного интеграла. Его геометрическая интерпретация, вычисление в декартовых и полярных координатах, сведение его к повторному. Применение в экономике и геометрии для вычисления объемов и площадей.
курсовая работа [2,7 M], добавлен 16.10.2013Определение определенного интеграла, его свойства. Длина дуги кривой. Площадь криволинейной трапеции. Площадь поверхности вращения. Площади фигур, ограниченных графиками функций, ограниченных линиями, заданными уравнениями. Вычисление объемов тел.
контрольная работа [842,6 K], добавлен 10.02.2017Особенности вычисления объемов тел, ограниченных поверхностями, с применением геометрического смысла двойного интеграла. Определение площадей плоских фигур, ограниченных линиями, с использованием метода интегрирования в курсе математического анализа.
презентация [67,9 K], добавлен 17.09.2013Определение криволинейного интеграла по координатам, его основные свойства и вычисление. Условие независимости криволинейного интеграла от пути интегрирования. Вычисление площадей фигур с помощью двойного интеграла. Использование формулы Грина.
контрольная работа [257,4 K], добавлен 23.02.2011Понятие определенного, двойного, тройного, криволинейного и поверхностного интегралов. Предел интегральной суммы. Вычисление двойного интеграла. Кратные интегралы в криволинейных координатах. Формулы перехода от цилиндрических координат к декартовым.
курсовая работа [241,3 K], добавлен 13.11.2011Рассмотрение задач численного интегрирования по простейшим формулам. Понятие тройных интегралов и их применение для вычисления объема, массы, площади, моментов инерции, статистических моментов и координат центра масс тела на конкретных примерах.
курсовая работа [348,5 K], добавлен 17.12.2013Вычисление площадей плоских фигур. Нахождение определенного интеграла функции. Определение площади под кривой, площади фигуры, заключенной между кривыми. Вычисление объемов тел вращения. Предел интегральной суммы функции. Определение объема цилиндра.
презентация [159,1 K], добавлен 18.09.2013Понятие двойного интеграла, условия его существования, свойства и методы вычисления: сведение двойного интеграла к повторному для прямоугольной и криволинейной областей; двойной интеграл в полярных координатах; замена переменных; вычисление объемов тел.
контрольная работа [321,9 K], добавлен 21.07.2013Понятие определённого интеграла, расчет площади, объёма тела и длины дуги, статического момента и центра тяжести кривой. Вычисление площади в случае прямоугольной криволинейной области. Применение криволинейного, поверхностного и тройного интегралов.
курсовая работа [2,1 M], добавлен 19.05.2011