Признак Даламбера. Степенные и функциональные ряды
Обоснование теорем Даламбера относительно знакочередующихся рядов, члены которых поочередно то неотрицательны, то отрицательны. Вычисление интервала и радиуса сходимости, которые вычисляют, воспользовавшись радикальным признаком Коши. Формула Стокса.
Рубрика | Математика |
Предмет | Математика |
Вид | реферат |
Язык | русский |
Прислал(а) | incognito |
Дата добавления | 17.05.2012 |
Размер файла | 174,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Описание признака сходимости числовых рядов Даламбера, решение задач на исследование сходимости. Формулировка радикального признака сходимости Коши знакоположительного ряда в предельной форме. Доказательство знакочередующихся и знакопеременных рядов.
реферат [190,9 K], добавлен 06.12.2010Понятие и особенности определения функциональных рядов. Специфика выражения радиуса сходимости степенного ряда через его коэффициенты. Способы нахождения его области и интервала сходимости. Логический ход математического доказательства теоремы Абеля.
презентация [86,5 K], добавлен 18.09.2013Исследование сходимости числового ряда. Использование признака Даламбера. Исследование на сходимость знакочередующегося ряда. Сходимость рядов по признаку Лейбница. Определение области сходимости степенного ряда. Сходимость ряда на концах интервала.
контрольная работа [131,9 K], добавлен 14.12.2012Рассмотрение особенностей сравнения рядов. Характеристика признаков сходимости Даламбера. Критерий Коши как ряд утверждений в математическом анализе. Анализ геометрической интерпретации интегрального признака. Способы определения сумы числового ряда.
контрольная работа [214,6 K], добавлен 01.03.2013Первое упоминание и использование числового ряда, его понятие и структура, этапы и направления дальнейшего исследования. Задачи, приводящие к понятию числового ряда и те, в которых он использовался. Признак Даламбера и Коши, Маклорена и сравнения.
курсовая работа [114,2 K], добавлен 01.10.2014Определение условий сходимости положительного ряда и описание свойств гармонических рядов Дирихле. Изучение теорем сравнения рядов и описание схемы Куммера для вывода из нее признаков сравнения ряда. Вывод признаков сравнения Даламбера, Раабе и Бертрана.
курсовая работа [263,6 K], добавлен 14.06.2015Решение неравенств и определение области сходимости рядов по признаку Даламбера и теореме Лейбница для знакопеременных рядов. Условия и пределы сходимости ряда. Исследование границ интервала. Проверка условия Лейбница при знакочередующемся ряде.
контрольная работа [127,2 K], добавлен 07.09.2010Изучение понятия числового ряда и его суммы. Особенности сходящихся и расходящихся рядов. Число e, как сумма ряда. Критерий Коши сходимости ряда. Алгебраические операции и сходимость. Ряды с неотрицательными членами. Интегральный признак Коши-Маклорена.
методичка [514,1 K], добавлен 26.06.2010Анализ уравнения гиперболического типа - волнового уравнения. Метод распространяющихся волн. Формула Даламбера, неоднородное уравнение. Задача Коши, двумерное волновое уравнение. Теорема устойчивости решения задачи Коши. Формулы волнового уравнения.
реферат [1,0 M], добавлен 11.12.2014Определение числового ряда, его основные свойства. Ряды геометрической прогрессии. Исследование на сходимость гармонического ряда. Ряды с положительными членами. Признаки сходимости. Знакочередующиеся и знакопеременные ряды. Признак сходимости Лейбница.
лекция [137,2 K], добавлен 27.05.2010