Параллельное проектирование

Понятие и свойства параллельного проектирования. Ортогональное проецирование – разновидность параллельной проекции. Свойства геометрических форм, сохраняющиеся в проекциях. Изображение плоских фигур. Проекции окружности, треугольника, шестиугольника.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 04.05.2012
Размер файла 157,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Параллельное проектирование и его свойства

Параллельное (цилиндрическое) проецирование можно рассматривать как частный случай центрального проецирования с несобственным центром. Здесь предмет рассматривают с бесконечно удаленной точки зрения.

Чертежи геометрических образов в ортогональных проекциях широко применяются в начертательной геометрии. Они просты в построениях, дают возможность легко производить различные измерения геометрических образов и определять взаимоположение отдельных элементов.

Пусть в евклидовом пространстве дана некоторая плоскость По и вектор р + По. Пусть М - любая точка пространства, не принадлежащая плоскости По. Проведем прямую l || р через М, тогда l ? По = (Мо). Мо называют проекцией точки М на плоскость По. Если р + По, то Мо - ортогональная проекция точки М на По. Если М € По, то Мо=М.

Множество Fо проекций точек данной фигуры F на плоскость По называется проекцией фигуры F на плоскость По.

Легко показать, что параллельное проецирование, как отображение множества точек пространства во множество точек плоскости По, обладает свойствами:

1. Проекцией прямой l является прямая lо, если , если то проекцией прямой l является точка Lо, где (Lо) = l ? По.

2. Проекцией параллельных прямых являются параллельные прямые или совпавшие прямые, или две точки.

3. Коллинеарные точки А, В, С проектируются в коллинеарные точки Ао, Во, Со.

4. Неколлинеарные точки А, В, С, лежащие в плоскости П, не параллельной вектору р, проектируются в неколлинеарные точки Ао, Во, Со.

5. Сохраняется отношение «лежать между» для трех коллинеарных точек А, В, С, если

6. Сохраняется простое отношение трех точек А, В, С, если

7. Если отрезок (луч) АВ не параллелен вектору р, то проекцией АВ является отрезок (луч) АоВо

8. Проекцией пересекающихся прямых являются пересекающиеся прямые или совпадающие прямые.

9. Проекцией скрещивающихся прямых являются пересекающиеся прямые или параллельные прямые, или совокупность точки и прямой

10. Проекцией угла АВС является угол АоВоСо в общем случае ему неравный. (плоскость АВС || р ).

11. Если две фигуры F и Ф - плоские и плоскости в которых они лежат параллельны между собой, но не параллельные p, то отношение площадей проекций Fо и Фо равно отношению площадей самих фигур F и Ф

Если F - проектируемая фигура при параллельном проецировании, заданном вектором р на плоскость По, то F называют оригиналом, р , направлением проецирования, По - плоскостью проекции, Fо - проекция фигуры на плоскость По. Если некоторая фигура F плоскости П подобна фигуре Fо плоскости По, то F может быть принята за изображение фигуры, т.е. изображением фигуры может являться любая фигура F, подобная параллельной проекции Fо.

2. Ортогональная проекция

Ортогональное проецирование является частным случаем параллельного проецирования, когда направление проецирования S перпендикулярно плоскости проекции П'.

В этом случае нетрудно установить соотношение между длиной натурального отрезка и длиной его проекции. Если отрезок AB образует с плоскостью проекций угол б, то, проведя AB*¦A' B' (рис.2), получим из прямоугольного треугольника AB*B, что AB*=AB cos б или A' B'= AB cos б.

Так как ортогональное проецирование - разновидность параллельного, то ему присущи те же свойства.

3. Требования к чертежу

Я установила, что первым и важнейшим шагом решения геометрической задачи является построение чертежа, соответствующего условию. Если задача планиметрическая, то чертеж является либо копией оригинала, либо ему подобен. При изображении пространственных фигур возникают трудности, ибо не может плоская фигура быть подобной пространственной. Чертеж должен удовлетворять некоторым требованиям, способствующим наилучшему восприятию изображения пространственной фигуры.

Прежде всего, чертеж должен быть верен, т, е. представляет собой фигуру, подобную произвольной параллельной проекции оригинала. При этом естественно должны выполняться все свойства параллельного проецирования. При проецировании устанавливается геометрическая (проективная) связь между оригиналом и проекцией. Геометрические образы (формы) содержат в себе свойства, сохраняющиеся в проекциях.

Свойство 1:

Если отрезок прямой делится точкой в каком-либо отношении, то и проекция отрезка делится проекцией точки в том же отношении.

Свойство 2:

Точка пересечения проекций пересекающихся прямых линий является проекцией точки пересечения этих прямых линий.

Свойство 3:

Проекции отрезков параллельных прямых линий параллельны и имеют одно направление, а длины их находятся в таком же отношении, как и длины самих отрезков.

Свойство 4:

Проекции отрезков двух скрещивающихся прямых линий в зависимости от направления проецирования могут или пресекаться, или быть параллельными.

Свойство 5:

При прямоугольном проецировании прямой угол между отрезками прямых проецируется без искажения(прямым углом), если одна из его сторон параллельна плоскости проекций, а другая не перпендикулярна к ней.

Во-вторых, чертеж должен быть наглядным, т. е. дающим пространственное представление об оригинале. С этой целью на изображении помимо очертания рассматриваются видимые и невидимые линии.

Наконец, чертеж должен быть легко выполним циркулем и линейкой, его построение должно удовлетворять аксиомам конструктивной геометрии. Однако разделы «Геометрические построения на плоскости» и «Методы изображений» так далеко стоят друг от друга, что при изучении одного мы совершенно забываем об изученном ранее другом.

4. Изображение плоских фигур в параллельной проекции. Проекция окружности

Параллельной проекцией окружности является кривая, называемая эллипсом. Так как ортогональная проекция является частным случаем параллельной проекции, то, проецируя окружность О, расположенную в плоскости общего положения Q (рис. 9) ортогонально на плоскость П1 , получаем эллипс О1 .

В окружности проведем два взаимно перпендикулярных диаметра АВ и CD, причем АВ пройдет по прямой уровня плоскости Q, а диаметр CD - по прямой наибольшего уклона этой плоскости по отношению к плоскости проекций П1. Тогда диаметр АВ спроецируется в диаметр А1В1 эллипса, равный диаметру окружности, т.е. АВ=А1В1 , а диаметр CD спроецируется в диаметр C1D1 эллипса. Так как угол, образованный этими диаметрами, является линейным углом двугранного угла наклона плоскости Q к плоскости П1 , то, обозначив его через ц, получим C1D1=CD cosц. Взаимно перпендикулярные окружности диаметры обладают свойством сопряженности (каждый сопряженный диаметр делит пополам хорды, параллельные другому диаметру). Это свойство при параллельном проецировании сохраняется. Следовательно, диаметры А1В1 и C1D1 будут сопряженными диаметрами эллипса. Но, с другой стороны, они взаимно перпендикулярны, поэтому являются осями эллипса, причем А 1В1- большая ось, а C1D1- малая ось.

Проекция треугольника, параллелограмма и трапеции.

Треугольник изображается треугольником любой формы. Медиана треугольника будет изображаться медианой, так как отношение отрезков сохраняется. При проекции биссектрисы и высоты пойдет искажение.

Так как параллельность прямых сохраняется, то изображение параллелограмма, в частности, прямоугольника, ромба, квадрата, служит параллелограмм. Длина сторон и величины углов произвольные.

Любая трапеция изображается в виде произвольной трапеции. Сохраняется только отношение оснований. Равнобокая трапеция имеет ось симметрии. Ее изображают следующим образом (рис. 10). Каждое из оснований делим пополам и проводим ось симметрии.

Проекции правильного шестиугольника.

При построении оригинала правильного шестиугольника используют два симметричных ромба: OBCD и OAFE (рис. 11, а). Изображение же получается при построении ромбов в виде двух одинаковых произвольных параллелограммов. Для получения проекции правильного шестиугольника надо оставшиеся точки соединить (рис. 11, б).

5. Изображение пространственных фигур в параллельной проекции

параллельный проекция окружность геометрический ортогональный

При изображении пространственных фигур в параллельной проекции применяют теорему Польке-Шварца Польке теорема, основная теорема аксонометрии; впервые была сформулирована немецким геометром К. Польке в 1860 (без доказательства). П. т. утверждает, что три отрезка произвольной длины, лежащих в одной плоскости и выходящих из одной точки под произвольными углами, представляют собой параллельную проекцию трёх равных и взаимно перпендикулярных отрезков, выходящих из одной точки в пространстве. На основании П. т. три произвольных отрезка, выходящих из одной точки на плоскости проекций, можно принять за изображение координатного трёхосника с одинаковыми масштабными отрезками на его осях. П. т. была обобщена немецким математиком Г. Шварцем, который дал её элементарное доказательство (1864). . Всякий полный невыраженный четырехугольник АВСD вместе с его диагоналями можно рассматривать как изображение тетраэдра любой наперед заданной формы

Используя теорему Польке-Шварца и свойство параллельного проецирования, я показываю, что изображением призмы и пирамиды , цилиндра и конуса являются фигуры.

6. Задачи

До выполнения построений решим опорные задачи.

Задача 1. Найти отношение АН:АС (или СН:СА), где точка Н- основание высоты ВН треугольника АВС.

Решение. При способе выносных чертежей необходимо построить треугольник A0

B0C0 - выносной чертеж треугольника АВС. В треугольнике A0B0C0 построим высоту B0Н0 ,имеем и отрезок A0Н0 , значит, отношение A0Н0:А0C0 станет известным. Так как АН¦АС и при параллельном проектировании отношение длин параллельных отрезков сохраняется, то искомое отношение АН:АС равно отношению A0Н0:А0C0.

Чтобы найти отношение АН:АС вычислительным способом, следует подсчитать сначала стороны треугольника АВС, затем, выразив ВН2 из прямоугольных треугольников АВН и СВН, получить равенство АВ2-АН2=ВС2-СН2. Полагая в этом равенстве для краткости АВ=с, ВС=а и АС=b , будем иметь: с2-АН2=а2-СН2 (1). Это равенство является основой для вычисления одного из отрезков АН или СН.

Независимо от вида треугольника АВС (рис. 15 а, б, в), сделав в равенстве (1) замену меньшего из двух отрезков СН или АН, т. е. полагая СН2=(b-АН)2 в случае, когда СН?АН, или АН2=(b-СН)2 в случае, когда АН<СН. Из уравнения с2-АН2=а2-(b-АН)2 найдем АН и затем искомое отношение АН:АС, или из уравнения с2-(b-СН)2 =а2-СН2 найдем СН и затем отношение СН:СА.

Задача2.Построить точку Х, делящую данный отрезок АС в отношении АХ:АС=p:q, в следующих случаях:

а) p и q - известные отрезки;

б) p и q - известные целые положительные числа.

А. Решение. На вспомогательном луче l, проведенном через точку А (рис.16, а, б), построим отрезки АХ1=kp и АС1=kq, где k>0. Например, на рисунках 16, а, б взято k=2.

Точку С1 соединим с точкой С и через точку Х1 проведем прямую, параллельную прямой СС1. Точка пересечения построенной прямой со вспомогательным лучом l и будет искомой точкой Х. На рисунке 16, а построение выполнено при условии p<q, а на рисунке 16, б - при условии p>q.

Б. Решение. Выберем некоторый отрезок е в качестве единичного отрезка.

На вспомогательном луче l, проведенном через точку А, построим отрезки АХ1=pe и АС1= qe. Дальнейшие построения, сделаны, как в пункте а). Они понятны из рисунка 16, в.

Заключение

Метод параллельного проектирования

Дана плоскость б и прямая l , задающая направление проецирования.

Зададим фигуру, которую надо спроектировать (отрезок AB). Через точки А и В проведем прямые, параллельные l и пересекающие плоскость б в точках A', B'. Отрезок A' B' - проекция АВ на плоскость б (рис.1).

Обозначается A' B' =пр б AB.

Свойства параллельной проекции.

1) Проекцией точки является точка.

2) Проекцией прямой является прямая - свойство прямолинейности.

3) Проекцией точки, лежащей на некоторой прямой, является точка, лежащая на проекции данной прямой - свойство принадлежности.

4) Проекциями параллельных прямых являются параллельные прямые -свойство сохранения параллельности.

5) Отношение проекций отрезков, лежащих на параллельных прямых или на одной и той же прямой, равно отношению самих отрезков.

6) Проекция фигуры не меняется при параллельном переносе плоскости проекций.

Использованная литература

1. Геометрия 10-11 класс - А.И. Александров, 1999. с.47

2. Геометрия 10-11 класс - Л.С. Атанасян. «Просвещение», 2001. с.60

3. Геометрия 10 - 11 класс - Погорелов

4. Интернет www.Math.ru

Размещено на Allbest.ru


Подобные документы

  • Биссектриса треугольника, центр вписанной окружности треугольника, точка Жергонна. Центр тяжести окружности треугольника. Решение задач на применение свойств биссектрисы. Окружность и прямая Эйлера, свойства окружности. Ортоцентр окружности треугольника.

    курсовая работа [330,3 K], добавлен 13.05.2015

  • Понятие плоскости и определение ее положения в пространстве. Задание плоскости ее следами на комплексном чертеже. Плоскости и проекции уровня. Свойство проецирующих плоскостей собирать одноименные проекции всех элементов, расположенных в данной плоскости.

    реферат [69,0 K], добавлен 17.10.2010

  • Определение вписанной и описанной окружности, их свойства и признаки. Взаимное расположение прямой и окружности. Свойства прямоугольного треугольника и теорема Пифагора. Задачи с окружностью, вписанной и описанной в треугольниках и четырехугольниках.

    реферат [298,7 K], добавлен 16.06.2009

  • Особенности использования метода секущих плоскостей для создания проекции и разветки пересечения поверхностей фигур. Порядок построения изометрии взаимного пересечения поверхностей фигур. Характеристика процесса создания фигуры с вырезом, опоры и стойки.

    реферат [21,3 K], добавлен 27.07.2010

  • Понятие окружности и круга, основные теоремы и свойства. Касание прямой и окружности, случаи их взаимного расположения. Вписанные и описанные фигуры. Относительное положение двух окружностей. Свойства хорд и расстояние до них. Определение длин и площадей.

    презентация [536,1 K], добавлен 16.04.2012

  • Условия отображения формы и размеров геометрического объекта при его моделировании. Виды проецирования, используемые при разработке графических моделей. Свойства ортогонального проецирования, отображение на комплексном чертеже точки, прямой и плоскости.

    реферат [1,2 M], добавлен 01.04.2011

  • Понятие треугольника и его роль в геометрии. Сумма углов треугольника, вычисление площади, свойства различных видов фигур. Признаки равенства и подобия треугольников, теорема Пифагора. Медианы, биссектрисы и высоты, соотношение между сторонами и углами.

    курс лекций [3,7 M], добавлен 23.04.2011

  • Свойства изящной математической системы - треугольника Паскаля, в котором каждое число равно сумме двух расположенных над ним чисел. Расстановка шаров в бильярде как классический пример треугольника Паскаля. Изображение треугольника Паскаля в виде точек.

    презентация [382,4 K], добавлен 16.12.2010

  • Начальные геометрические сведения и формирования представлений учеников о понятиях точки, прямой, отрезка, треугольника, параллельных прямых, их расположение относительно друг друга. Задачи на вычисление геометрических величин и изображение фигур.

    презентация [222,5 K], добавлен 15.09.2010

  • Цепочка теорем, которая охватывает весь курс геометрии. Средняя линия фигур как отрезок, соединяющий середины двух сторон данной фигуры. Свойства средних линий. Построение различных планиметрических и стереометрических фигур, рациональное решение задач.

    научная работа [2,0 M], добавлен 29.01.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.