Марковские процессы

Классификация случайных процессов. Основные понятия Марковских случайных процессов. Математический аппарат дискретных Марковских цепей. Понятие однородной цепи Маркова. Переходные вероятности и матрица перехода. Теорема о предельных вероятностях.

Рубрика Математика
Вид курсовая работа
Язык русский
Дата добавления 10.04.2012
Размер файла 264,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1.1. Основные понятия Марковских процессов

Марковские случайные процессы названы по имени выдающегося русского математика А.А. Маркова (1856-1922), впервые начавшего изучение вероятностной связи случайных величин и создавшего теорию, которую можно назвать “динамикой вероятностей”. В дальнейшем основы этой теории явились исходной базой общей теории случайных процессов, а также таких важных прикладных наук, как теория диффузионных процессов, теория надежности, теория массового обслуживания и т.д. В настоящее время теория Марковских процессов и ее приложения широко применяются в самых различных областях таких наук, как механика, физика, химия и др.

Благодаря сравнительной простоте и наглядности математического аппарата, высокой достоверности и точности получаемых решений особое внимание Марковские процессы приобрели у специалистов, занимающихся исследованием операций и теорией принятия оптимальных решений.

Несмотря на указанную выше простоту и наглядность, практическое применение теории Марковских цепей требует знания некоторых терминов и основных положений, на которых следует остановиться перед изложением примеров.

Как указывалось, Марковские случайные процессы относятся к частным случаям случайных процессов (СП). В свою очередь, случайные процессы основаны на понятии случайной функции (СФ).

Случайной функцией называется функция, значение которой при любом значении аргумента является случайной величиной (СВ). По- иному, СФ можно назвать функцию, которая при каждом испытании принимает какой-либо заранее неизвестный вид.

Такими примерами СФ являются: колебания напряжения в электрической цепи, скорость движения автомобиля на участке дороги с ограничением скорости, шероховатость поверхности детали на определенном участке и т.д.

Как правило, считают, что если аргументом СФ является время, то такой процесс называют случайным. Существует и другое, более близкое к теории принятия решений, определение случайных процессов. При этом под случайным процессом понимают процесс случайного изменения состояний какой-либо физической или технической системы по времени или какому-либо другому аргументу.

Нетрудно заметить, что если обозначить состояние и изобразить зависимость , то такая зависимость и будет случайной функцией.

Случайные процессы классифицируются по видам состояний и аргументу t. При этом случайные процессы могут быть с дискретными или непрерывными состояниями или временем.

Кроме указанных выше примеров классификации случайных процессов существует еще одно важное свойство. Это свойство описывает вероятностную связь между состояниями случайных процессов. Так, например, если в случайном процессе вероятность перехода системы в каждое последующее состояние зависит только от предыдущего состояния, то такой процесс называется процессом без последействия.

Отметим, во-первых, что случайный процесс с дискретными состояниями и временем называется случайной последовательностью.

Если случайная последовательность обладает Марковским свойством, то она называется цепью Маркова.

С другой стороны, если в случайном процессе состояния дискретны, время непрерывно и свойство последействия сохраняется, то такой случайный процесс называется Марковским процессом с непрерывным временем.

Марковский случайный процесс называется однородным, если переходные вероятности остаются постоянными в ходе процесса.

Цепь Маркова считается заданной, если заданы два условия.

1. Имеется совокупность переходных вероятностей в виде матрицы:

. (2)

2. Имеется вектор начальных вероятностей

, ….. (3)

описывающий начальное состояние системы.

Кроме матричной формы модель Марковской цепи может быть представлена в виде ориентированного взвешенного графа (рис. 1).

Рис. 1 Ориентированный взвешенный граф

Множество состояний системы Марковской цепи, определенным образом классифицируется с учетом дальнейшего поведения системы.

1. Невозвратное множество (рис. 2).

Рис.2. Невозвратное множество

В случае невозвратного множества возможны любые переходы внутри этого множества. Система может покинуть это множество, но не может вернуться в него.

2. Возвратное множество (рис. 3).

Рис. 3. Возвратное множество

В этом случае также возможны любые переходы внутри множества. Система может войти в это множество, но не может покинуть его.

3. Эргодическое множество (рис. 4).

Рис. 4. Эргодическое множество

В случае эргодического множества возможны любые переходы внутри множества, но исключены переходы из множества и в него.

4. Поглощающее множество (рис. 5)

Рис. 5. Поглощающее множество

При попадании системы в это множество процесс заканчивается.

В некоторых случаях, несмотря на случайность процесса, имеется возможность до определенной степени управлять законами распределения или параметрами переходных вероятностей. Такие Марковские цепи называются управляемыми. Очевидно, что с помощью управляемых цепей Маркова (УЦМ) особенно эффективным становится процесс принятия решений, о чем будет сказано впоследствии.

Основным признаком дискретной Марковской цепи (ДМЦ) является детерминированность временных интервалов между отдельными шагами (этапами) процесса. Однако часто в реальных процессах это свойство не соблюдается и интервалы оказываются случайными с каким-либо законом распределения, хотя марковость процесса сохраняется. Такие случайные последовательности называются полумарковскими.

Кроме того, с учетом наличия и отсутствия тех или иных, упомянутых выше, множеств состояний Марковские цепи могут быть поглощающими, если имеется хотя бы одно поглощающее состояние, или эргодическими, если переходные вероятности образуют эргодическое множество. В свою очередь, эргодические цепи могут быть регулярными или циклическими. Циклические цепи отличаются от регулярных тем, что в процессе переходов через определенное количество шагов (циклов) происходит возврат в какое-либо состояние. Регулярные цепи этим свойством не обладают.

1.2 Марковский процесс с дискретным временем

Итак, модель Марковского процесса представим в виде графа, в котором состояния (вершины) связаны между собой связями (переходами из i-го состояния в j-е состояние), см. рис. 1.

Рис. 2.1. Пример графа переходов

Каждый переход характеризуется вероятностью перехода Pij. Вероятность Pij показывает, как часто после попадания в i-е состояние осуществляется затем переход в j-е состояние. Конечно, такие переходы происходят случайно, но если измерить частоту переходов за достаточно большое время, то окажется, что эта частота будет совпадать с заданной вероятностью перехода.

Ясно, что у каждого состояния сумма вероятностей всех переходов (исходящих стрелок) из него в другие состояния должна быть всегда равна 1 .

Рис. 2.2. Фрагмент графа переходов (переходы из i-го состояния являются полной группой случайных событий)

Реализация Марковского процесса (процесс его моделирования) представляет собой вычисление последовательности (цепи) переходов из состояния в состояние (см. рис.2.3.). Цепь является случайной последовательностью и может иметь также и другие варианты реализации.

Рис. 2.3.. Пример марковской цепи, смоделированной по марковскому графу, изображенному на рис. 2.2.

Математический аппарат дискретных Марковских цепей

Основным математическим соотношением для ДМЦ является уравнение, с помощью которого определяется состояние системы на любом ее k-м шаге. Это уравнение имеет вид:

(4)

и называется уравнением Колмогорова-Чепмена.

Уравнение Колмогорова-Чепмена относится к классу рекуррентных соотношений, позволяющих вычислить вероятность состояний Марковского случайного процесса на любом шаге (этапе) при наличии информации о предшествующих состояниях.

1.3 Марковские случайные процессы с непрерывным временем

Итак, снова модель Марковского процесса представим в виде графа, в котором состояния (вершины) связаны между собой связями (переходами из i-го состояния в j-е состояние), см. рис. 3.1..

Рис. 3.1. Пример графа Марковского процесса с непрерывным временем

Теперь каждый переход характеризуется плотностью вероятности перехода ?ij. По определению:

При этом плотность понимают как распределение вероятности во времени.

Переход из i-го состояния в j-е происходит в случайные моменты времени, которые определяются интенсивностью перехода ?ij.

К интенсивности переходов (здесь это понятие совпадает по смыслу с распределением плотности вероятности по времени t) переходят, когда процесс непрерывный, то есть, распределен во времени.

Зная интенсивность ?ij появления событий, порождаемых потоком, можно сымитировать случайный интервал между двумя событиями в этом потоке.

где ?ij -- интервал времени между нахождением системы в i-ом и j-ом состоянии.

Далее, очевидно, система из любого i-го состояния может перейти в одно из нескольких состояний j, j + 1, j + 2, …, связанных с ним переходами ?ij, ?ij + 1, ?ij + 2, ….

В j-е состояние она перейдет через ?ij; в (j + 1)-е состояние она перейдет через ?ij + 1; в (j + 2)-е состояние она перейдет через ?ij + 2 и т. д.

Ясно, что система может перейти из i-го состояния только в одно из этих состояний, причем в то, переход в которое наступит раньше.

Поэтому из последовательности времен: ?ij, ?ij + 1, ?ij + 2 и т. д. надо выбрать минимальное и определить индекс j, указывающий, в какое именно состояние произойдет переход.

Рассмотрим пример. Моделирование работы станка. Промоделируем работу станка (см. рис. 3.2.), который может находиться в следующих состояниях: S0 -- станок исправен, свободен (простой); S1 -- станок исправен, занят (обработка); S2 -- станок исправен, замена инструмента (переналадка) ?02 < ?21; S3 -- станок неисправен, идет ремонт ?13 < ?30.

Зададим значения параметров ?, используя экспериментальные данные, получаемые в производственных условиях: ?01 -- поток на обработку (без переналадки); ?10 -- поток обслуживания; ?13 -- поток отказов оборудования; ?30 -- поток восстановлений.

Реализация будет иметь следующий вид (рис. 3.2.).

Рис. 3.2. Пример моделирования непрерывного марковского процесса с визуализацией на временной диаграмме (желтым цветом указаны запрещенные, синим -- реализовавшиеся состояния)

В частности, из рис. 3.2. видно, что реализовавшаяся цепь выглядит так: S0--S1--S0--… Переходы произошли в следующие моменты времени: T0--T1--T2--T3--…, где T0 = 0, T1 = ?01, T2 = ?01 + ?10.

Очень часто аппарат Марковских процессов используется при моделировании компьютерных игр

1.4. Цепь Маркова

случайный процесс марковский вероятность

Представим, что производится последовательность испытаний.

Определение. Цепью Маркова называют последовательность испытаний, в каждом из которых появляется одно и только одно из несовместных событий полной группы, причем условная вероятность того, что в -м испытании наступит событие , при условии, что в -м испытании наступило событие , не зависит от результатов предшествующих испытаний.

Например, если последовательность испытаний образует цепь Маркова и полная группа состоит из четырех несовместных событий , причем известно, что в шестом испытании появилось событие , то условная вероятность того, что в седьмом испытании наступит событие , не зависит от того, какие события появились в первом, втором, …, пятом испытаниях.

Заметим, что независимые испытания являются частным случаем цепи Маркова. Действительно, если испытания независимы, то появление некоторого определенного события в любом испытании не зависит от результатов ранее произведенных испытаний. Отсюда следует, что понятие цепи Маркова является обобщением понятия независимых испытаний.

Часто при изложении теории цепей Маркова придерживаются иной терминология и говорят о некоторой физической системе , которая в каждый момент времени находится в одном из состояний: , и меняет свое состояние только в отдельные моменты времени то есть система переходит из одного состояния в другое ( например из в ). Для цепей Маркова вероятность перейти в какое-либо состояние в момент зависит только от того, в каком состоянии система находилась в момент , и не изменяется от того, что становятся известными ее состояния в более ранние моменты. Так же в частности, после испытания система может остаться в том же состоянии («перейти» из состояния в состояние ).

Для иллюстрации рассмотрим пример.

Пример 1. Представим, что частица, находящаяся на прямой, движется по этой прямой под влиянием случайных толчков, происходящих в моменты . Частица может находиться в точках с целочисленными координатами: ; в точках и находятся отражающие стенки. Каждый толчок перемещает частицу вправо с вероятностью и влево с вероятностью , если только частица не находится у стенки. Если же частица находится у стенки, то любой толчок переводит ее на единицу внутрь промежутка между стенками. Здесь мы видим, что этот пример блуждания частицы представляет собой типичную цепь Маркова.

Таким образом, события называют состояниями системы, а испытания - изменениями ее состояний.

Дадим теперь определение цепи Маркова, используя новую терминологию.

Цепью Маркова с дискретным временем называют цепь, изменение состояний которой происходит в определенные фиксированные моменты времени.

Цепью Маркова с непрерывным временем называют цепь, изменение состояний которой происходит в любые случайные возможные моменты времени.

1.5 Однородная цепь Маркова. Переходные вероятности. Матрица перехода

Определение. Однородной называют цепь Маркова, если условная вероятность (переход из состояния в состоянии ) не зависит от номера испытания. Поэтому вместо пишут просто .

Пример 1. Случайное блуждание. Пусть на прямой в точке с целочисленной координатой находится материальная частица. В определенные моменты времени частица испытывает толчки. Под действием толчка частица с вероятностью смещается на единицу вправо и с вероятностью - на единицу влево. Ясно, что положение (координата) частицы после толчка зависит от того, где находилась частица после непосредственно предшествующего толчка, и не зависит от того, как она двигалась под действием остальных предшествующих толчков.

Таким образом, случайное блуждание ? пример однородной цепи Маркова с дискретным временем.

Далее ограничимся элементами теории конечных однородных цепей Маркова.

Переходной вероятностью называют условную вероятность того, что из состояния (в котором система оказалась в результате некоторого испытания, безразлично какого номера) в итоге следующего испытания система перейдет в состояние .

Таким образом, в обозначении первый индекс указывает номер предшествующего, а второй ? номер последующего состояния. Например, - вероятность перехода из второго состояния в третье.

Пусть число состояний конечно и равно .

Матрицей перехода системы называют матрицу, которая содержит все переходные вероятности этой системы:

Так как в каждой строке матрицы помещены вероятности событий (перехода из одного и того же состояния в любое возможное состояние ), которые образуют полную группу, то сумма вероятностей этих событий равна единице. Другими словами, сумма переходных вероятностей каждой строки матрицы перехода равна единице:

Приведем пример матрицы перехода системы, которая может находиться в трех состояниях ; переход из состояния в состояние происходит по схеме однородной цепи Маркова; вероятности перехода задаются матрицей:

Здесь видим, что если система находилось в состоянии , то после изменения состояния за один шаг она с вероятностью 0,5 останется в этом же состоянии, с вероятностью 0,5 останется в этом же состоянии, с вероятностью 0,2 перейдет в состояние , то после перехода она может оказаться в состояниях ; перейти же из состояния в она не может. Последняя строка матрицы показывает нам, что из состояния перейти в любое из возможных состояний с одной и той же вероятностью 0,1.

На основе матрицы перехода системы можно построить так называемый граф состояний системы, его еще называют размеченный граф состояний. Это удобно для наглядного представления цепи. Порядок построения граф рассмотрим на примере.

Пример 2. По заданной матрице перехода построить граф состояний.

Т.к. матрица четвертого порядка, то, соответственно, система имеет 4 возможных состояния.

S1

0,2 0,7

S2 0,4 S4

0,6 0,5

0,1 0,5

S3

На графе не отмечаются вероятности перехода системы из одного состояния в то же самое. При рассмотрении конкретных систем удобно сначала построить граф состояний, затем определить вероятность переходов системы из одного состояния в то же самое (исходя из требования равенства единице суммы элементов строк матрицы), а потом составить матрицу переходов системы.

1.6 Равенство Маркова

Определение. Обозначим через вероятность того, что в результате шагов (испытаний) система перейдет из состояния в состояние . Например, - вероятность перехода за 10 шагов из второго состояния в пятое.

Подчеркнем, что при получим переходные вероятности

Поставим перед собой задачу: зная переходные вероятности найти вероятности перехода системы из состояния в состояние за шагов.

С этой целью введем в рассмотрение промежуточное (между и ) состояние . Другими словами, будeм считать, что из первоначального состояния за шагов система перейдет в промежуточное состояние с вероятностью , после чего за оставшиеся шагов из промежуточного состояния она перейдет в конечное состояние с вероятностью .

По формуле полной вероятности, получим

. (1)

Эту формулу называют равенством Маркова.

Пояснение. Введем обозначения:

- интересующее нас событие (за шагов система перейдет из начального состояния в конечное ), следовательно, ; ? гипотезы( за шагов система перейдет из первоначального состояния в промежуточное состояние ), следовательно, ? условная вероятность наступления при условии, что имела место гипотеза (за шагов система перейдет из промежуточного состояния в конечное ), следовательно,

По формуле полной вероятности,

()

Или в принятых нами обозначениях

что совпадает с формулой Маркова (1).

Зная все переходные вероятности т.е зная матрицу перехода из состояния в состояние за один шаг, можно найти вероятности перехода из состояния в состояние за два шага, следовательно, и саму матрицу перехода ; по известной матрице можно найти матрицу перехода из состояния в состояние за три шага, и т.д.

Действительно, положив в равенстве Маркова

,

Получим

,

Или

(2)

Таким образом, по формуле (2) можно найти все вероятности следовательно, и саму матрицу . Поскольку непосредственное использование формулы (2) оказывается утомительным, а матричное исчисление ведет к цели быстрее, напишу вытекающие из (2) соотношение в матричной форме:

Положив в (1), аналогично получим

В общем случае

Теорема 1. При любых s, t

(3)

Доказательство. Вычислим вероятность по формуле полной вероятности (), положив

(4)

Из равенств

и

следует

Отсюда из равенств (4) и

получим утверждение теоремы.

Определим матрицу В матричной записи (3) имеет вид

(5)

Так как то где ? матрица вероятности перехода. Из (5) следует

(6)

Результаты, полученной в теории матриц, позволяют по формуле (6) вычислить и исследовать их поведение при

Пример 1. Задана матрица перехода Найти матрицу перехода

Решение. Воспользуемся формулой

Перемножив матрицы, окончательно получим: .

1.7 Стационарное распределение. Теорема о предельных вероятностях

Распределение вероятностей в произвольной момент времени можно найти, воспользовавшись формулой полной вероятности

(7)

Может оказаться, что не зависит от времени. Назовем стационарным распределением вектор , удовлетворяющий условиям

,

(8)

где вероятности перехода.

Если в цепи Маркова то при любом

Это утверждение следует по индукции из (7) и (8).

Приведем формулировку теоремы о предельных вероятностях для одного важного класса цепей Маркова.

Теорема 1. Если при некотором >0 все элементы матрица положительны, то для любых , при

, (9)

где стационарное распределение с а некоторая постоянная, удовлетворяющая неравенством 0<h<1.

Так как , то по условию теоремы из любого состояния можно попасть в любое за время с положительной вероятностью. Условия теоремы исключает цепи, являющиеся в некотором смысле периодическими.

Если выполнить условие теоремы 1, то вероятность того, что система находится в некотором состоянии , в пределе не зависит от начального распределение. Действительно, из (9) и (7) следует, что при любом начальном распределении ,

Рассмотрим несколько примеров цепи Маркова, которых условия теоремы 1, не выполнены. Нетрудно проверить, что такими примерами является примеры. В примере вероятности перехода имеют приделы, но эти приделы зависят от начального состояния. В частности, при 0<<,

В других примеров приделы вероятностей при очевидно, не существуют.

Найдем стационарное распределение в примере 1. Нужно найти вектор удовлетворяющий условиям (8):

,

,

;

Отсюда, Таким образом, стационарное распределение существует, но не все координаты векторы положительны.

Для полиномиальной схемы были введены случайные величины, равные чесу исходов данного типа. Введем аналогичные величины для цепей Маркова. Пусть ? число попадания системы в состояние за время . Тогда частота попаданий системы в состояние . Используя формулы (9), можно доказать, что при сближается с . Для этого нужно получить асимптотические формулы для и и воспользоваться неравенством Чебышева. Приведем вывод формулы для . Представим в виде

(10)

где , если , и в противном случае.

Так как,то, воспользовавшись свойством математического ожидания и формулой (9), получим

.

Втрое слагаемое в правой части этого равенства в силу теоремы 1 является частной суммой сходящегося ряда. Положив , получим

(11)

Поскольку

Из формулы (11), в частности, следует, что

при

Так же можно получить формулу для которая используется для вычисления дисперсии.

II глава. Марковские процессы

Рассмотрим систему, которую в любой момент времени можно описать одним из состояний, , для примера .

Через определенный промежуток времени система может изменить свое состояние или остаться в прежнем состоянии согласно вероятностям, указанным для данных состояний. Моменты времени, когда мы регистрируем состояние системы, обозначим как а состояние в момент времени мы обозначим . Полное описание рассмотренной выше системы должно содержать текущее состояние (в момент времени ) и последовательность всех предыдущих состояний, через которые прошла система. В отдельных случаях описание системы сводится к указанию текущего и предыдущего состояния, т.е.

(1.1)

Кроме того, мы также полагаем что процессы, протекающие в системе, не зависят от времени, о чем нам говорит правая часть формулы (1.1). Таким образом, систему можно описать матрицей вероятностей в виде

(1.2)

где - это вероятность перехода из состояния в состояние в данный момент времени. Поскольку эти вероятности характеризуют случайный процесс, они имеют обычные свойства, т.е.

(1.3)

Описанный выше случайный процесс можно назвать открытой Марковской моделью, поскольку выходной сигнал модели - это последовательность состояний регистрируемых во времени. Каждое состояние соответствует определенному (наблюдаемому) событию.

Теперь рассмотрим простую Марковскую модель погоды, у которой будет всего три состояния. Предполагается, что мы один раз в день (например, в полдень), смотрим в окно и регистрируем в журнале текущее состояние погоды. Мы условились, что лишь одно из трех ниженазванных состояний в день мы записываем в журнал:

· Состояние №1: дождь (или снег)

· Состояние №2: пасмурно

· Состояние №3: ясно

Матрица вероятностей изменения погоды имеет вид

(1.4)

Так как погода в первый день () ясная (состояние 3), мы можем задать себе вопрос: какова вероятность (согласно нашей модели), что следующие 7 дней будет именно "ясно - ясно - ясно - дождь - дождь - ясно - пасмурно - ясно"? Точнее сказать, для данной последовательности состояний , где соответствует, мы хотим на основе данной модели определить вероятность наблюдения последовательности . Эта вероятность может быть выражена (и вычислена) следующим образом

(1.5)

где - это вероятность того, что начальное состояние системы будет .

Есть и другой интересный вопрос, ответ на который нам даст эта модель: какова вероятность того, что модель сохранит свое состояние в течение ровно дней? Эта вероятность может быть вычислена как вероятность наблюдения следующей последовательности

дает модель, в которой

(1.6)

Величина - это вероятность того, что система будет находиться в состоянии ровно раз подряд. Соответственно, есть функция распределения вероятности для продолжительности пребывания системы в одном состоянии, которая является характеристикой сохранения состояния для Марковской цепи. Зная величины мы можем вычислить среднее время, в течение которого система сохранит свое состояние (используем формулу математического ожидания):

(1.7)

(1.8)

Ожидается, что солнечная погода вероятнее всего простоит дней, пасмурная - 2.5 дня, а вот дождливая погода, согласно нашей модели, вероятнее всего продержится 1.67 дня.

Размещено на Allbest.ru


Подобные документы

  • Основные понятия теории марковских цепей. Теория о предельных вероятностях. Области применения цепей Маркова. Управляемые цепи Маркова. Выбор стратегии. Оптимальная стратегия является марковской - может зависеть еще и от момента времени принятия решения.

    реферат [75,6 K], добавлен 08.03.2004

  • Цепь Маркова как простой случай последовательности случайных событий, области ее применения. Теорема о предельных вероятностях в цепи Маркова, формула равенства Маркова. Примеры для типичной и однородной цепи Маркова, для нахождения матрицы перехода.

    курсовая работа [126,8 K], добавлен 20.04.2011

  • Основные понятия теории марковских цепей, их использование в теории массового обслуживания для расчета распределения вероятностей числа занятых приборов в системе. Методика решения задачи о наилучшем выборе. Понятие возвратных и невозвратных состояний.

    курсовая работа [107,2 K], добавлен 06.11.2011

  • Цепи Маркова как обобщение схемы Бернулли, описание последовательности случайных событий с конечным или счётным бесконечным числом исходов; свойство цепей, их актуальность в информатике; применение: определение авторства текста, использование PageRank.

    дипломная работа [348,5 K], добавлен 19.05.2011

  • Определение случайного процесса в математике, ряд терминов и понятий, описывающих механизм этого процесса. Марковские, стационарные случайные процессы с дискретными состояниями. Особенности эргодического свойства стационарных случайных процессов.

    реферат [33,1 K], добавлен 15.05.2010

  • Сходимость последовательностей случайных величин. Центральная предельная теорема для независимых одинаково распределенных случайных величин. Основные задачи математической статистики, их характеристика. Проверка гипотез по критерию однородности Смирнова.

    курсовая работа [1,6 M], добавлен 13.11.2012

  • Классификация случайных событий. Функция распределения. Числовые характеристики дискретных случайных величин. Закон равномерного распределения вероятностей. Распределение Стьюдента. Задачи математической статистики. Оценки параметров совокупности.

    лекция [387,7 K], добавлен 12.12.2011

  • Определение случайного процесса и его характеристики. Основные понятия теории массового обслуживания. Понятие марковского случайного процесса. Потоки событий. Уравнения Колмогорова. Предельные вероятности состояний. Процессы гибели и размножения.

    реферат [402,0 K], добавлен 08.01.2013

  • Возможные варианты расчета вероятности событий. Выборочное пространство и события, их взаимосвязь. Общее правило сложения вероятностей. Законы распределения дискретных случайных величин, их математическое ожидание. Свойства биномиального распределения.

    презентация [1,4 M], добавлен 19.07.2015

  • Вероятность события. Теоремы сложения и умножения событий. Теорема полной вероятности события. Повторные независимые испытания. Формула Бернулли, формула Пуассона, формула Муавра-Лапласа. Закон распределения вероятностей случайных дискретных величин.

    контрольная работа [55,2 K], добавлен 19.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.