Случайные величины

Числовые характеристики случайных величин. Понятие и свойства математического ожидания и дисперсии. Равномерный закон распределения. Определение непрерывной случайной величины. Область определения функции. Графическое изображение вариационного ряда.

Рубрика Математика
Вид доклад
Язык русский
Дата добавления 26.03.2012
Размер файла 270,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

При изготовлении партии деталей все они не могут быть получены по качественным признакам. Даже при неизменных условиях обработки происходит разброс (или, как говорят, "рассеяние") размеров деталей, причем это рассеяние может происходить либо в пределах поля (величины и расположения) допуска, и тогда все детали будут годными, либо в более широких пределах, и тогда часть деталей будет браком. То же самое относится и к другим качественным параметрам деталей: шероховатости поверхности, биению, параллельности поверхностей и т.д. Размер детали является результатом совместного и непрерывного действия ряда случайных и систематически действующих факторов, каждый из которых стремится изменить размер в ту или иную сторону. По этим причинам результат измерения конкретной детали является случайной величиной.

При измерении партии деталей или при повторных измерениях одной и той же детали появление того или иного конкретного числового значения случайной величины рассматривается как случайное событие, т.е. событие, результат которого заранее может быть предсказан только с какой-то долей достоверности (как говорят, "с некоторой вероятностью"). Поэтому обработку результатов измерений проводят на основе теории вероятности и математической статистики.

Случайная величина -- это величина, которая принимает в результате опыта одно из множества значений, причём появление того или иного значения этой величины до её измерения нельзя точно предсказать.

Числовыми характеристиками случайных величин являются математическое ожидание и дисперсия, а так же и моменты случайных величин

Математическое ожиданием М(Х) называется средняя величина возможных значений случайных величин, взвешенных по их вероятности. Выражается формулой:

величина дисперсия функция гистограмма интервал

Свойство 1. Мат. ожидание постоянной равно этой постоянной.

Свойство 2. Мат. ожидание суммы случайных величин равно сумме их мат. ожиданий:

Из этого свойства следует следствие:

Математическое ожидание суммы конечного числа случайных величин равно сумме их математических ожиданий:

Свойство 3. Математическое ожидание произведения независимых случайных величин Х и Y равно произведению математических ожиданий этих вел. M(XY)=M(X)?(M)Y.

Следствие. Постоянный множитель можно вынести за знак математических ожидания: М(сХ) = сМ(Х)

Дисперсией называется математическое ожидание квадрата отклонения случайных величин от математического ожидания:

D[Х]=M[X-M(X)]2

Свойство 1. Дисперсия постоянной величины равна нулю.

Свойство 2. постоянную величину можно вынести за знак дисперсии, предварительно возведя ее в квадрат: D(cX) = c2D(X)

Свойство 3. Дисперсия суммы независимых случайных величин Х и Y равна сумме их дисперсий:

D(X+Y) = D(X) + D(Y),

отсюда следствие: если х1, х2, ..., хn - случайные величины, каждая из которых независима от суммы остальных, то

D(X1+X2+...+Xn) = D(X1) + D(X2)+...+D(Xn).

Моментом k-порядка называется математическое ожидание k-й степени отклонения случайной величины Х от некоторой постоянной с.

Если в качестве с берется нуль, моменты называются начальными нk = М(Х)k

Если с = М(Х), то моменты называются центральными

м = M[X - M(X)]k

Равномерный закон распределения.

На практике встречаются случайные величины, о которых заранее известно, что они могут принять какое-либо значение в строго определенных границах, причем в этих границах все значения случайной величины имеют одинаковую вероятность (обладают одной и той же плотностью вероятностей). Например, при поломке часов остановившаяся минутная стрелка будет с одинаковой вероятностью (плотностью вероятности) показывать время, прошедшее от начала данного часа до поломки часов. Это время является случайной величиной, принимающей с одинаковой плотностью вероятности значения, которые не выходят за границы, определенные продолжительностью одного часа. К подобным случайным величинам относится также и погрешность округления. Про такие величины говорят, что они распределены равномерно, т. е. имеют равномерное распределение.

Определение. Непрерывная случайная величина Х имеет равномерное распределение на отрезке [а, в], если на этом отрезке плотность распределения вероятности случайной величины постоянна, т. е. если дифференциальная функция распределения f(х) имеет следующий вид:

Иногда это распределение называют законом равномерной плотности. Про величину, которая имеет равномерное распределение на некотором отрезке, будем говорить, что она распределена равномерно на этом отрезке.

Найдем значение постоянной с. Так как площадь, ограниченная кривой распределения и осью Ох, равна 1, то

откуда с=1/(b-a).

Нормальный закон распределения.

Одним из наиболее часто встречающихся распределений является нормальное распределение. Оно играет большую роль в теории вероятностей и занимает среди других распределений особое положение. Нормальный закон распределения является предельным законом, к которому приближаются другие законы распределения при часто встречающихся аналогичных условиях.

Если предоставляется возможность рассматривать некоторую случайную величину как сумму достаточно большого числа других случайных величин, то данная случайная величина обычно подчиняется нормальному закону распределения. Суммируемые случайные величины могут подчиняться каким угодно распределениям, но при этом должно выполняться условие их независимости (или слабой зависимости). При соблюдении некоторых не очень жестких условий указанная сумма случайных величин подчиняется приближенно нормальному закону распределения и тем точнее, чем большее количество величин суммируется.

Ни одна из суммируемых случайных величин не должна резко отличаться от других, т. е. каждая из них должна играть в общей сумме примерно одинаковую роль и не иметь исключительно большую по сравнению с другими величинами дисперсию.

Для примера рассмотрим изготовление некоторой детали на станке-автомате. Размеры изготовленных деталей несколько отличаются от требуемых. Это отклонение размеров от стандарта вызывается различными причинами, которые более или менее независимы друг от друга. К ним могут относиться: неравномерный режим обработки детали; неоднородность обрабатываемого материала; неточность установки заготовки в станке; износ режущего инструмента и деталей станков; упругие деформаций узлов станка; состояние микроклимата в цехе; колебание напряжения в электросети и т. д. Каждая из перечисленных и подобных им причин влияет на отклонение размера изготовляемой детали от стандарта. Таким образом, общее отклонение размера, фиксируемое измерительным прибором, является суммой большего числа отклонений, обусловленных различными причинами. Если ни одна из этих причин не является доминирующей, то суммарное отклонение является случайной величиной, имеющей нормальный закон распределения.

Так как нормальному закону подчиняются только непрерывные случайные величины, то это распределение можно задать в виде плотности распределения вероятности.

Определение: Непрерывная случайная величина Х имеет нормальное распределение (распределена по нормальному закону), если плотность распределения вероятности f(x) имеет вид

где а и s -- некоторые постоянные, называемые параметрами нормального распределения.

Функция распределения F(x) в рассматриваемом случае принимает вид

Параметр а - есть математическое ожидание НСВХ, имеющей нормальное распределение, s - среднее квадратическое отклонение, тогда дисперсия равна

Рассмотрим свойства функции f(x):

1. Областью определения функции f(x) является вся числовая ось.

2. Функция f{x) может принимать только положительные значения, т. е. f(x}>0.

3. Предел функции f(x) при неограниченном возрастании |х| равен нулю, т. е. ось ОХ является горизонтальной асимптотой графика функции.

4. Функция f{x) имеет в точке х = a максимум, равный

5. График функции f(x) симметричен относительно прямой х = а.

6. Нормальная кривая в точках х = а +s имеет перегиб,

Гистограмма и полигон

Гистограмму используют для изображения интервальных рядов. Для построения гистограммы по данным вариационного ряда с равными интервалами, как и для построения полигона, на оси абсцисс откладывают значения аргумента, а на оси ординат - значения частот или относительных частот. Далее строят прямоугольники, основаниями которых служат отрезки оси абсцисс, длины которых равны длинам интервалов, а высотами - отрезки, длины которых пропорциональны частотам или относительным частотам соответствующих интервалов.

В результате получают ступенчатую фигуру в виде сдвинутых друг к другу прямоугольников, площади которых пропорциональны частотам (или относительным частотам).

Если интервалы неравные, то на оси ординат следует откладывать в произвольно выбранном масштабе значения плотности распределения (абсолютной или относительной). Таким образом, высоты прямоугольников, которые мы строим, должны равняться плотностям соответствующих интервалов.

При графическом изображении вариационного ряда с помощью гистограммы плотность изображается так, как если бы она оставалась постоянной внутри каждого интервала. На самом деле, как правило, это не так. Если построить распределение по частям интервалов, то можно убедиться в том, что плотность распределения на различных участках интервала не остается постоянной. Плотность представляла лишь некоторую среднюю плотность. Итак, гистограмма изображает не фактическое изменение плотности распределения, а лишь средние плотности распределения на каждом интервале.

Если построена гистограмма интервального распределения, то полигон того же распределения можно получить, если соединить прямолинейными отрезками середины верхних оснований прямоугольников.

Полигоном частот называют ломаную линию, отрезки которой соединяют точки . Для построения полигона частот на оси абсцисс откладывают варианты , а на оси ординат - соответствующие им частоты и соединяют точки отрезками прямых.

Полигон относительных частот строится аналогично, за исключением того, что на оси ординат откладываются относительные частоты .

В случае непрерывного признака строится гистограмма, для чего интервал, в котором заключены все наблюдаемые значения признака, разбивают на несколько частичных интервалов длиной h и находят для каждого частичного интервала - сумму частот вариант, попавших в i-й интервал.

Гистограммой частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которой служат частичные интервалы длиною h, а высоты равны отношению . Для построения гистограммы частот на оси абсцисс откладывают частичные интервалы, а над ними проводят отрезки, параллельные оси абсцисс на расстоянии (высоте) . Площадь i-го прямоугольника равна - сумме частот вариант i-о интервала, поэтому площадь гистограммы частот равна сумме всех частот, т.е. объему выборки.

В случае гистограммы относительных частот по оси ординат откладываются относительные частоты , на оси абсцисс - частичные интервалы, над ними проводят отрезки, параллельные оси абсцисс на высоте . Площадь i-го прямоугольника равна относительной частоте вариант , попавших в i-й интервал. Поэтому площадь гистограммы относительных частот равна сумме всех относительных частот, то есть единице.

Размещено на Allbest.ru


Подобные документы

  • Определение вероятности для двух несовместных и достоверного событий. Закон распределения случайной величины; построение графика функции распределения. Нахождение математического ожидания, дисперсии, среднего квадратичного отклонения случайной величины.

    контрольная работа [97,1 K], добавлен 26.02.2012

  • События и случайные величины. Функция распределения и ее характерные свойства. Сущность и определение основных числовых характеристик случайных величин: математическое ожидание, дисперсия, моменты. Критерии и факторы, влияющие на их формирование.

    контрольная работа [118,5 K], добавлен 30.01.2015

  • Описание случайных ошибок методами теории вероятностей. Непрерывные случайные величины. Числовые характеристики случайных величин. Нормальный закон распределения. Понятие функции случайной величины. Центральная предельная теорема. Закон больших чисел.

    реферат [146,5 K], добавлен 19.08.2015

  • Вычисление математического ожидания, дисперсии, функции распределения и среднеквадратического отклонения случайной величины. Закон распределения случайной величины. Классическое определение вероятности события. Нахождение плотности распределения.

    контрольная работа [38,5 K], добавлен 25.03.2015

  • Математическое ожидание случайной величины. Свойства математического ожидания, дисперсия случайной величины, их суммы. Функция от случайных величин, ее математическое ожидание. Коэффициент корреляции, виды сходимости последовательности случайных величин.

    лекция [285,3 K], добавлен 17.12.2010

  • Дискретные системы двух случайных величин. Композиция законов распределения, входящих в систему. Определение вероятности попадания случайной величины в интервал; числовые характеристики функции; математическое ожидание и дисперсия случайной величины.

    контрольная работа [705,1 K], добавлен 22.11.2013

  • Понятия теории вероятностей и математической статистики, применение их на практике. Определение случайной величины. Виды и примеры случайных величин. Закон распределения дискретной случайной величины. Законы распределения непрерывной случайной величины.

    реферат [174,7 K], добавлен 25.10.2015

  • Решение задач по определению вероятности событий, ряда и функции распределения с помощью формулы умножения вероятностей. Нахождение константы, математического описания и дисперсии непрерывной случайной величины из функции распределения случайной величины.

    контрольная работа [57,3 K], добавлен 07.09.2010

  • Область определения функции, которая содержит множество возможных значений. Нахождение закона распределения и характеристик функции случайной величины, если известен закон распределения ее аргумента. Примеры определения дискретных случайных величин.

    презентация [68,7 K], добавлен 01.11.2013

  • Понятие случайной величины, а также ее основные числовые характеристики. Случайная величина, подчиняющаяся нормальному закону распределения. Кривые плотности вероятности. Использование генератора случайных чисел. Изображение векторов в виде графика.

    лабораторная работа [301,4 K], добавлен 27.05.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.