Имитационное моделирование. Имитационная модель
Варианты и подходы к формулировке имитационного моделирования, его классификация и разновидности, отличительные особенности и функции: агентное, дискретно-событийное и системная динамика. Методы и приемы построения имитационной модели, ее анализ.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 30.01.2012 |
Размер файла | 22,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Контрольная работа
Имитационное моделирование. Имитационная модель
Введение
Применение оптимизационных и игровых моделей в практических задачах встречает затруднение, когда заходит речь о моделировании «больших систем». К ним относятся социально-экономические системы, характеризуемые большим числом параметров, сложным переплетением интересов, неопределенной структурой и многочисленными целями. Объекты такого типа плохо поддаются формализации и математическому описанию на основе аппарата оптимизационных и игровых моделей.
Сложность построения моделей «больших систем» заключается, прежде всего, в трудности постановки или формулирования задачи моделирования, которая требует комплексного системного описания наиболее важных сторон объекта.
Моделирование «больших систем» почти всегда связано либо с неопределенностью критериев, либо с наличием критериев, предъявляющих к решению противоречивые требования, а также с непостоянством критериев.
В этой связи развивается другое направление экономико-математического моделирования «больших систем» - имитационное моделирование.
Имитационное моделирование представляет собой систему, состоящую из совокупностей следующих элементов:
· имитационных моделей, отображающих определенные черты,
свойства или части «большой системы» и позволяющих отвечать на
вопрос: что будет при данных условиях и принятом решении (пря
мая задача моделирования);
· экспертов и экспертных процедур, необходимых для анализа и
оценки различных решений, исключения заведомо слабых решений,
построения «сценариев» развития событий, выработки целей и критериев;
· «языков» ЭВМ, на основе которых осуществляется двухсторонний контакт экспертов с ЭВМ. Эксперт задает исходные данные,
меняет структуру моделей, формулирует вопросы ЭВМ при помощи
специальных языков моделирования.
К имитационному моделированию прибегают, когда: дорого или невозможно экспериментировать на реальном объекте; невозможно построить аналитическую модель: в системе есть время, причинные связи, последствие, нелинейности, стохастические (случайные) переменные; необходимо сымитировать поведение системы во времени. Имитационную модель можно рассматривать как множество правил (дифференциальных уравнений, карт состояний, автоматов, сетей и т.п.), которые определяют, в какое состояние система перейдёт в будущем из заданного текущего состояния.
Имитация - это процесс «выполнения» модели, проводящий её через (дискретные или непрерывные) изменения состояния во времени.
Цель имитационного моделирования состоит в воспроизведении поведения исследуемой системы на основе результатов анализа наиболее существенных взаимосвязей между ее элементами или другими словами - разработке симулятора (английский термин - simulation modeling) исследуемой предметной области для проведения различных экспериментов.
Имитационное моделирование позволяет имитировать поведение системы, во времени. Причём плюсом является то, что временем в модели можно управлять: замедлять в случае с быстропротекающими процессами и ускорять для моделирования систем с медленной изменчивостью. Можно имитировать поведение тех объектов реальные эксперименты, с которыми, дороги, невозможны или опасны.
1. Имитационное моделирование
1.1 Варианты формулировки имитационного моделирования
Имитационное моделирование - это метод, позволяющий строить модель, описывающие процессы так, как они проходили бы в действительности. Такую модель можно «проиграть» во времени как для одного испытания, так и заданного их множества. При этом результаты будут определяться случайным характером процессов. По этим данным можно получить достаточно устойчивую статистику.
Имитационное моделирование - это метод исследования, при котором изучаемая система заменяется моделью с достаточной точностью описывающей реальную систему и с ней проводятся эксперименты с целью получения информации об этой системе. Экспериментирование с моделью называют имитацией (имитация - это постижение сути явления, не прибегая к экспериментам на реальном объекте).
Имитационное моделирование - это частный случай математического моделирования. Существует класс объектов, для которых по различным причинам не разработаны аналитические модели, либо не разработаны методы решения полученной модели. В этом случае математическая модель заменяется имитатором или имитационной моделью.
1.3 Разновидности имитации
· Метод Монте-Карло (метод статистических испытаний);
· Метод имитационного моделирования (статистическое моделирование).
Статистическое имитационное моделирование, позволяющее воспроизводить на ЭВМ функционирование сложных случайных процессов. При исследовании сложных систем, подверженных случайным возмущениям используются вероятностные аналитические модели и вероятностные имитационные модели. В вероятностных аналитических моделях влияние случайных факторов учитывается с помощью задания вероятностных характеристик случайных процессов (законы распределения вероятностей, спектральные плотности или корреляционные функции). При этом построение вероятностных аналитических моделей представляет собой сложную вычислительную задачу. Поэтому вероятностное аналитическое моделирование используют для изучения сравнительно простых систем. Подмечено, что введение случайных возмущений в имитационные модели не вносит принципиальных усложнений, поэтому исследование сложных случайных процессов проводится в настоящее время, как правило, на имитационных моделях.
В вероятностном имитационном моделировании оперируют не с характеристиками случайных процессов, а с конкретными случайными числовыми значениями параметров ПС. При этом результаты, полученные при воспроизведении на имитационной модели рассматриваемого процесса, являются случайными реализациями. Поэтому для нахождения объективных и устойчивых характеристик процесса требуется его многократное воспроизведение, с последующей статистической обработкой полученных данных. Именно поэтому исследование сложных процессов и систем, подверженных случайным возмущениям, с помощью имитационного моделирования принято называть статистическим моделированием.
Статистическая модель случайного процесса - это алгоритм, с помощью которого имитируют работу сложной системы, подверженной случайным возмущениям; имитируют взаимодействие элементов системы, носящих вероятностный характер.
При реализации на ЭВМ статистического имитационного моделирования возникает задача получения на ЭВМ случайных числовых последовательностей с заданными вероятностными характеристиками. Численный метод, решающий задачу генерирования последовательности случайных чисел с заданными законами распределения, получил название «метод статистических испытаний» или «метод Монте-Карло».
Так как метод Монте-Карло кроме статистического моделирования имеет приложение к ряду численных методов (взятие интегралов, решение уравнений), то целесообразно иметь различные термины.
Итак, статистическое моделирование - это способ изучения сложных процессов и систем, подверженных случайным возмущениям, с помощью имитационных моделей.
Метод Монте-Карло - это численный метод, моделирующий на ЭВМ псевдослучайные числовые последовательности с заданными вероятностными характеристиками.
Методика статистического моделирования состоит из следующих этапов:
1. Моделирование на ЭВМ псевдослучайных последовательностей с заданной корреляцией и законом распределения вероятностей (метод Монте-Карло), имитирующих на ЭВМ случайные значения параметров при каждом испытании;
2. Преобразование полученных числовых последовательностей на имитационных математических моделях.
3. Статистическая обработка результатов моделирования.
1.2 Виды имитационного моделирования
1. Агентное моделирование - относительно новое (1990е-2000е гг.) направление в имитационном моделировании, которое используется для исследования децентрализованных систем, динамика функционирования которых определяется не глобальными правилами и законами (как в других парадигмах моделирования), а наоборот. Когда эти глобальные правила и законы являются результатом индивидуальной активности членов группы. Цель агентных моделей - получить представление об этих глобальных правилах, общем поведении системы, исходя из предположений об индивидуальном, частном поведении ее отдельных активных объектов и взаимодействии этих объектов в системе. Агент - некая сущность, обладающая активностью, автономным поведением, может принимать решения в соответствии с некоторым набором правил, взаимодействовать с окружением, а также самостоятельно изменяться.
2. Дискретно-событийное моделирование - подход к моделированию, предлагающий абстрагироваться от непрерывной природы событий и рассматривать только основные события моделируемой системы, такие как: «ожидание», «обработка заказа», «движение с грузом», «разгрузка» и другие. Дискретно-событийное моделирование наиболее развито и имеет огромную сферу приложений - от логистики и систем массового обслуживания до транспортных и производственных систем. Этот вид моделирования наиболее подходит для моделирования производственных процессов. Основан Джеффри Гордоном в 1960х годах.
3. Системная динамика - парадигма моделирования, где для исследуемой системы строятся графические диаграммы причинных связей и глобальных влияний одних параметров на другие во времени, а затем созданная на основе этих диаграмм модель имитируется на компьютере. По сути, такой вид моделирования более всех других парадигм помогает понять суть происходящего выявления причинно-следственных связей между объектами и явлениями. С помощью системной динамики строят модели бизнес-процессов, развития города, модели производства, динамики популяции, экологии и развития эпидемии. Метод основан Форрестером в 1950 годах.
Области применения:
· Бизнес процессы
· Боевые действия
· Динамика населения
· ИТ-инфраструктура
· Математическое моделирование исторических процессов
· Логистика
· Пешеходная динамика
· Производство
· Рынок и конкуренция
· Сервисные центры
· Цепочки поставок
· Уличное движение
· Управление проектами
· Экономика здравоохранения
· Экосистемы
2. Имитационная модель
Имитационная модель - логико-математическое описание объекта, которое может быть использовано для экспериментирования на компьютере в целях проектирования, анализа и оценки функционирования объекта.
Имитационные модели представляют собой довольно сложные программы для компьютера, описывающие поведение компонентов системы и взаимодействие между ними. Расчеты по этим программам при различных исходных данных позволяют имитировать динамические процессы, происходящие в реальной системе.
В результате исследования модели, являющейся аналогом реального объекта, получают количественные характеристики, отображающие его поведение при заданных условиях (исходных данных).
Изменяя исходные данные моделирования, можно получить достоверную информацию о поведении объекта в той или иной ситуации. Эти данные впоследствии могут быть использованы для разработки теории поведения объекта.
Имитационные модели в некоторой степени напоминают физические модели, т.е. модели реальных объектов в миниатюре. Например, существует физическая модель Братской ГЭС, в которой воспроизведены все реальные условия ее работы в уменьшенном масштабе. Задавая различные скорости течения воды, меняя условия прохождения водного потока через колеса гидроагрегатов, донные и сливные отверстия, ученые измеряют различные параметры водных потоков, оценивают устойчивость сооружений станций, степень размыва речного дна, берегов и дают заключения о наилучших режимах работы ГЭС. Примерно так же происходит процесс имитационного моделирования. Разница заключается только в том, что вместо потоков воды используются потоки информации о движении воды, вместо показаний физических приборов - данные, полученные с помощью ЭВМ. Конечно, имитационный эксперимент менее нагляден, чем физический опыт, но его возможности гораздо шире, так как в имитационной модели фактически допустимы любые изменения, каждый фактор можно варьировать по усмотрению исследователя, ошибки, возникающие в модели или исходных данных, легче заметить.
Математический аппарат, используемый для построения имитационных моделей, может быть самым разнообразным, например: теория массового обслуживания, теория агрегативных систем, теория автоматов, теория дифференциальных уравнений и пр. Имитационные исследования обычно требуют статистической обработки результатов моделирования, поэтому в основу всякой имитации входят методы теории вероятностей и математической статистики.
Имитационное моделирование является многоэтапным процессом и связано с оценкой полученных результатов, изменением структуры модели, целей и критериев моделирования. Для изучения полученных экспериментальных данных необходима группа людей (экспертов), обладающих знаниями в областях, непосредственно относящихся к объекту исследования.
Экспертные процедуры используют коллективный опыт людей и предназначены для усреднения мнений и получения объективной оценки какого-либо события или явления. Проведение экспертиз в большинстве случаев позволяет выработать определенные решения оценить относительную важность ряда событий или найти пропорции между показателями. Например, экспертам, занятым планированием в сфере обслуживания населения, может быть задан вопрос: «В каком отношении (пропорции) должны развиваться отрасли сферы обслуживания населения с точки зрения объемов реализации услуг?» При ответе на вопрос каждому эксперту предлагается проставить коэффициенты относительной важности, или баллы, каждой отраслевой группы обслуживания, например, в такой форме:
Сфера обслуживания |
Баллы |
Нормированные баллы |
|
Торговля |
20 |
0.33 |
|
Общественное питание |
10 |
0.17 |
|
Бытовое обслуживание |
11 |
0.18 |
|
Коммунальное хозяйство |
13 |
0.21 |
|
Пассажирский транспорт |
6 |
0.11 |
Для определения пропорций развития отраслевых групп обслуживания экспертам раздают анкеты определенного образца и предлагают ознакомиться со «сценарием» развития сферы обслуживания населения. «Сценарий» представляет собой своего рода прогноз состояния развития общественных потребностей на длительную перспективу, включая численность населения, его доходы и расходы по статьям затрат, жилищные условия, внедрение в практику новой техники и технологий, совершенствование видов и форм обслуживания населения, методов организации и управления обслуживанием и т.п.
После ознакомления со «сценарием» эксперты выражают свое мнение в виде баллов. Затем анкеты собирают и результаты экспертного анализа (допустим, баллы, приведенные в примере) усредняют по каждой отраслевой группе и нормируют, т.е. баллы по каждой отраслевой группе делят на их общую сумму. Полученные нормированные баллы отражают желаемые пропорции развития отраслевых групп обслуживания.
Существует большое количество форм и методов проведения экспертных анализов. Например, можно собирать группы экспертов для обсуждения рассматриваемых вопросов. Анкеты могут быть посланы эксперту домой (на работу), и тогда оценки отразят его мнение без посторонних влияний и дискуссий. Можно осуществить учет компетентности эксперта, проставив ему соответствующий «вес», аналогичный баллам.
При оценке качества функционирования какой-либо имитационной модели эксперты определяют, какие параметры модели главные, а какие - второстепенные; устанавливают желаемые пределы изменения параметров; осуществляют выбор лучшего варианта модели. В задачи эксперта также входит изменение условий моделирования, если это необходимо, выбор и корректировка целей моделирования в тех случаях, когда после проведения модельных экспериментов выявляются новые неучтенные факторы.
Как правило, работа экспертов или экспертных групп связана с обработкой данных на ЭВМ, оценкой результатов, полученных после моделирования какой-либо задачи, т.е. основана на общении членов экспертной группы с ЭВМ при помощи специальных языков.
Общение человека-эксперта с компьютером при имитации «больших систем» требуется в двух случаях. В первом случае, когда имитационная модель не использует формальный математический аппарат и представляет собой в основном процесс экспертной оценки совокупности содержательных событий или целей, для общения применяют типовые пакеты Excel, Word и т.п. Процесс общения эксперта с ЭВМ при подсчете средних баллов или коэффициентов, оценивающих те или иные события, цели, осуществляется согласно методике экспертного анализа. Здесь применение ЭВМ минимально. Во втором случае, когда имитационную модель используют для изучения функционирования какого-либо сложного объекта, например производственного предприятия, банка или рынка, путем машинной имитации информационных процессов при заданных условиях, модель записывается на одном из специальных имитационных языков, например JPSS, Симскрипт, Симула, Динамо, MathCad plus и пр.
Важным преимуществом таких языков является наличие в них методов нахождения ошибок, значительно превосходящих соответствующие возможности универсальных языков. Однако применение специальных имитационных языков налагает ограничения на форму вывода информации о поведении моделируемой системы. Использование универсального языка типа Фортран меньше всего ограничивает форму вывода данных. Наоборот, использование языка типа Симскрипт вынуждает приспосабливаться к требованиям, налагаемым этим языком. Поэтому в сложных имитационных системах для общения экспертов с имитационной моделью используют различные языки. При описании процессов в имитируемой системе могут быть применены такие языки, как JPSS, Симскрипт, Симула, Динамо, а для описания различных «сервисных» и выводных процедур - универсальные языки Фортран, PL, Алгол, а также пакеты Excel, Word и т.п.
Заключение
моделирование агентный имитационный дискретный
Таким образом, при имитационном моделировании, реализующий модель алгоритм воспроизводит процесс функционирования системы во времени, причем имитируются элементарные явления, составляющие процесс с сохранением их логической структуры и последовательности протекании во времени, что позволяет по исходным данным получить сведения о состоянии процесса в определенные моменты времени, дающие возможность оценить характеристики системы.
Основное достоинство имитационного моделирования:
1. возможность описания поведения компонент (элементов) процессов или систем на высоком уровне детализации;
2. отсутствие ограничений между параметрами имитационного моделирования и состоянием внешней среды РПС;
3. возможность исследования динамики взаимодействия компонента во времени и пространстве параметров системы;
Эти достоинства обеспечивают имитационному методу широкое распространение.
Рекомендуется использовать имитационное моделирование в следующих случаях:
1. Если не существует законченной постановки задачи исследования и идет процесс познания объекта моделирования. Имитационная модель служит средством изучения явления.
2. Если аналитические методы имеются, но математические процессы сложны и трудоемки, и имитационное моделирование дает более простой способ решения задачи.
3. Когда кроме оценки влияния параметров (переменных) процесса или системы желательно осуществить наблюдение за поведением компонент (элементов) процесса или системы (ПС) в течение определенного периода.
4. Когда имитационное моделирование оказывается единственным способом исследования сложной системы из-за невозможности наблюдения явлений в реальных условиях (реакции термоядерного синтеза, исследования космического пространства).
5. Когда необходимо контролировать протекание процессов или поведение систем путем замедления или ускорения явлений в ходе имитации.
6. При подготовке специалистов новой техники, когда на имитационных моделях обеспечивается возможность приобретения навыков в эксплуатации новой техники.
7. Когда изучаются новые ситуации в РПС. В этом случае имитация служит для проверки новых стратегий и правил проведения натурных экспериментов.
8. Когда особое значение имеет последовательность событий в проектируемых ПС и модель используется для предсказания узких мест в функционировании РПС.
Однако имитационное моделирование наряду с достоинствами имеет и недостатки:
1. Разработка хорошей имитационной модели часто обходится дороже создания аналитической модели и требует больших временных затрат.
2. Может оказаться, что имитационная модель неточна (что бывает часто), и мы не в состоянии измерить степень этой неточности.
3. Зачастую исследователи обращаются к имитационному моделированию, не представляя тех трудностей, с которыми они встретятся и совершают при этом ряд ошибок методологического характера.
И, тем не менее, имитационное моделирование является одним из наиболее широко используемых методов при решении задач синтеза и анализа сложных процессов и систем.
Список литературы
1. Емельянов А.А. Имитационное моделирование экономических процессов. М.: Финансы и статистика. 2002 - 368 с.
2. Строгалев В.П., Толкачева И.О. Имитационное моделирование. - МГТУ им. Баумана, 2008. - С. 697-737.
3. Хемди А., Таха Имитационное моделирование // Введение в исследование операций - 7-е изд. - М.: «Вильямс», 2007. - С. 697-737.
Интернет ресурсы:
1. http://www.intuit.ru
2. http://www.dic.academic.ru
Размещено на Allbest.ru
Подобные документы
Суть компьютерного моделирования. Система, модели и имитационное моделирование. Механизмы продвижения времени. Компоненты дискретно-событийной имитационной модели. Усиление и ослабление факторов сопутствующих активности гейзера, динамическая модель.
курсовая работа [776,2 K], добавлен 28.06.2013Теоретические основы оценивания показателей точности и описание статистической имитационной модели. Моделирование мощности излучения и процесса подготовки к измерениям. Статистическая обработка результатов моделирования и сущность закона распределения.
дипломная работа [1,9 M], добавлен 10.06.2011Теоретические основы моделирования: понятие модели и моделирования. Моделирование в решении текстовых задач. Задачи на встречное движение двух тел. Задачи на движение двух тел в одном направлении и в противоположных направлениях. Графические изображения.
курсовая работа [98,9 K], добавлен 03.07.2008Вводные понятия. Классификация моделей. Классификация объектов (систем) по их способности использовать информацию. Этапы создания модели. Понятие о жизненном цикле систем. Модели прогнозирования.
реферат [36,6 K], добавлен 13.12.2003Математическое моделирование задач коммерческой деятельности на примере моделирования процесса выбора товара. Методы и модели линейного программирования (определение ежедневного плана производства продукции, обеспечивающей максимальный доход от продажи).
контрольная работа [55,9 K], добавлен 16.02.2011Принципы и этапы построения математической модели движения неуправляемого двухколесного велосипеда. Условия устойчивого движения. Вопрос гироскопической стабилизации движения. Модель движения велосипеда с гиростабилизатором в системе Matlab (simulink).
статья [924,5 K], добавлен 30.10.2015Оценка вероятности простоя цеха в виде схемы движения заявок или в виде соответствия "состояния системы"-"события". Выбор единицы моделирования и погрешности измеряемых параметров. Создание блок-схемы и листинга программы, отладка модели на языке GPSS.
лабораторная работа [213,6 K], добавлен 15.04.2012Процесс выбора или построения модели для исследования определенных свойств оригинала в определенных условиях. Стадии процесса моделирования. Математические модели и их виды. Адекватность математических моделей. Рассогласование между оригиналом и моделью.
контрольная работа [69,9 K], добавлен 09.10.2016Составление имитационной модели и расчет показателей эффективности системы массового обслуживания по заданны параметрам. Сравнение показателей эффективности с полученными путем численного решения уравнений Колмогорова для вероятностей состояний системы.
курсовая работа [745,4 K], добавлен 17.12.2009Определение понятия модели, необходимость их применения в науке и повседневной жизни. Характеристика методов материального и идеального моделирования. Классификация математических моделей (детерминированные, стохастические), этапы процесса их построения.
реферат [28,1 K], добавлен 20.08.2015