Правильные многоугольники

Древнейшие упоминания о правильных многогранниках в трактате Платона "Тимаус". Элементы симметрии тетраэдра, куба, октаэдра. Использование свойств многогранников в различных сферах деятельности человека. Анализ прямой правильной пятиугольной антипризмы.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 29.01.2012
Размер файла 114,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МОУ школа № 47

Тема реферата:

Правильные многоугольники

Выполнил: Визинский Роман

Тольятти 2012

Содержание

Введение

1. Определение правильного многогранника

2. Платоновы тела

3. Виды правильных многогранников

4. Пять правильных многогранников

Заключение

Введение

Я выбрал тему «Правильные многогранники» потому, что в нашей жизни многогранники встречаются повсюду, почти в каждом предмете можно увидеть многогранник.

Мне было очень интересно узнать эти удивительные фигуры получше, ведь в школе с ними знакомятся совсем мало.

Человек проявляет интерес к многогранникам на протяжении всей своей сознательной деятельности - от маленького ребенка, который играет с кубиками, до взрослого человека. Некоторые многогранники встречаются в природе - в виде кристаллов или вирусов, пчелы строят соты в форме шестиугольников.

Мир наш исполнен симметрии. С древнейших времен с ней связаны наши представления о красоте. Наверное, этим объясняется непреходящий интерес человека к многогранникам - удивительным символам симметрии, привлекавшим внимание множества выдающихся мыслителей, от Платона и Евклида до Эйлера и Коши.

1. Правильные многогранники

Многогранник - часть пространства, ограниченная совокупностью конечного числа плоских многоугольников, соединенных таким образом, что каждая сторона любого многоугольника является стороной ровно одного другого многоугольника (называемого смежным), причем, вокруг каждой вершины существует ровно один цикл многоугольников. Эти многоугольники называются гранями, их стороны - ребрами, а вершины - вершинами многогранника.

Многогранник называется выпуклым, если он весь лежит по одну сторону от плоскости любой его грани, тогда грани его тоже выпуклы. Выпуклый многогранник разрезает пространство на две части -- внешнюю и внутреннюю. Внутренняя его часть есть выпуклое тело. Обратно, если поверхность выпуклого тела многогранная, то соответствующий многогранник -- выпуклый.[1]

Выпуклый многогранник называется правильным, если все его грани - равные правильные многоугольники и к каждой вершине примыкает одно и то же число граней.

Если все грани - правильные р-угольники и q из них примыкают к каждой вершине, то такой правильный многогранник обозначается {p, q}. Это обозначение было предложено Л. Шлефли (1814-1895), швейцарским математиком, которому принадлежит немало изящных результатов в геометрии и математическом анализе.

Существуют невыпуклые многогранники, у которых грани пересекаются и которые называются «правильными звездчатыми многогранниками». Так как мы условились такие многогранники не рассматривать, то под правильными многогранниками мы будем понимать исключительно выпуклые правильные многогранники. [1]

2. Платоновы тела

многогранник симметрия октаэдр

Одно из древнейших упоминаний о правильных многогранниках находится в трактате Платона (427-347 до н. э.) "Тимаус". Поэтому правильные многогранники также называются платоновыми телами (хотя известны они были задолго до Платона). Каждый из правильных многогранников, а всего их пять, Платон ассоциировал с четырьмя "земными" элементами (стихиями): земля (куб), вода (икосаэдр), огонь (тетраэдр), воздух (октаэдр), а также с "неземным" элементом - небом (додекаэдр). Знаменитый математик и астроном Кеплер построил модель Солнечной системы как ряд последовательно вписанных и описанных правильных многогранников и сфер. [2]

На рисунках ниже изображены правильные многогранники. Простейшим из них является правильный тетраэдр, гранями которого служат четыре равносторонних треугольника и к каждой из вершин примыкают по три грани. Тетраэдру соответствует запись {3, 3}. Это не что иное, как частный случай треугольной пирамиды. Наиболее известен из правильных многогранников куб (иногда называемый правильным гексаэдром) - прямая квадратная призма, все шесть граней которой - квадраты. Так как к каждой вершине примыкают по 3 квадрата, куб обозначается {4, 3}. Если две конгруэнтные квадратные пирамиды с гранями, имеющими форму равносторонних треугольников, совместить основаниями, то получится многогранник, называемый правильным октаэдром. Он ограничен восемью равносторонними треугольниками, к каждой из вершин примыкают по четыре треугольника, и, следовательно, ему соответствует запись {3, 4}. Правильный октаэдр можно рассматривать и как частный случай прямой правильной треугольной антипризмы. Рассмотрим теперь прямую правильную пятиугольную антипризму, грани которой имеют форму равносторонних треугольников, и две правильные пятиугольные пирамиды, основания которых конгруэнтны основанию антипризмы, а грани имеют форму равносторонних треугольников. Если эти пирамиды присоединить к антипризме, совместив их основания, то получится еще один правильный многогранник. Двадцать его граней имеют форму равносторонних треугольников, к каждой вершине примыкают по пять граней. Такой многогранник называется правильным икосаэдром и обозначается {3, 5}. Помимо четырех названных выше правильных многогранников, существует еще один - правильный додекаэдр, ограниченный двенадцатью пятиугольными гранями; к каждой его вершине примыкают по три грани, поэтому додекаэдр обозначается как {5, 3}. [1]

3. Виды правильных многогранников

Тетраэдр

Тетраэдр составлен из четырех равносторонних треугольников. Каждая его вершина является вершиной трех треугольников. Сумма плоских углов при каждой вершине равна 180 градусов. Таким образом, тетраэдр имеет 4 грани, 4 вершины и 6 ребер.

Элементы симметрии:

Тетраэдр не имеет центра симметрии, но имеет 3 оси симметрии и 6 плоскостей симметрии.[10]

Куб

Куб составлен из шести квадратов. Каждая его вершина является вершиной трех квадратов. Сумма плоских углов при каждой вершине равна 270 градусов. Таким образом, куб имеет 6 граней, 8 вершин и 12 ребер.

Элементы симметрии:

Куб имеет центр симметрии - центр куба, 9 осей симметрии и 9 плоскостей симметрии[11]

Октаэдр

Октаэдр составлен из восьми равносторонних треугольников. Каждая его вершина является вершиной четырех треугольников. Сумма плоских углов при каждой вершине равна 240 градусов. Таким образом, октаэдр имеет 8 граней, 6 вершин и 12 ребер.

Элементы симметрии:

Октаэдр имеет центр симметрии - центр октаэдра, 9 осей симметрии и 9 плоскостей симметрии. [12]

Икосаэдр

Икосаэдр составлен из двадцати равносторонних треугольников. Каждая его вершина является вершиной пяти треугольников. Сумма плоских углов при каждой вершине равна 300 градусов. Таким образом икосаэдр имеет 20 граней, 12 вершин и 30 ребер.

Элементы симметрии:

Икосаэдр имеет центр симметрии - центр икосаэдра, 15 осей симметрии и 15 плоскостей симметрии. [13]

Додекаэдр

Додекаэдр составлен из двенадцати равносторонних пятиугольников. Каждая его вершина является вершиной трех пятиугольников. Сумма плоских углов при каждой вершине равна 324 градусов. Таким образом, додекаэдр имеет 12 граней, 20 вершин и 30 ребер.

Элементы симметрии: Додекаэдр имеет центр симметрии - центр додекаэдра, 15 осей симметрии и 15 плоскостей симметрии. [14]

Пять перечисленных выше правильных многогранников, часто называемых также «телами Платона», захватили воображение математиков, мистиков и философов древности более двух тысяч лет назад. Древние греки даже установили мистическое соответствие между тетраэдром, кубом, октаэдром и икосаэдром и четырьмя природными началами - огнем, землей, воздухом и водой. Что касается пятого правильного многогранника, додекаэдра, то они рассматривали его как форму Вселенной. Эти идеи не являются одним лишь достоянием прошлого. И сейчас, спустя два тысячелетия, многих привлекает лежащее в их основе эстетическое начало. О том, что они не утратили свою притягательность и поныне, весьма убедительно свидетельствует картина испанского художника Сальвадора Дали Тайная вечеря.

Древними греками исследовались также и многие геометрические свойства платоновых тел; с плодами их изысканий можно ознакомиться по 13-й книге Начал Евклида. Изучение платоновых тел и связанных с ними фигур продолжается и поныне. И хотя основными мотивами современных исследований служат красота и симметрия, они имеют также и некоторое научное значение, особенно в кристаллографии. Кристаллы поваренной соли, тиоантимонида натрия и хромовых квасцов встречаются в природе в виде куба, тетраэдра и октаэдра соответственно. Икосаэдр и додекаэдр среди кристаллических форм не встречаются, но их можно наблюдать среди форм микроскопических морских организмов, известных под названием радиолярий. [1]

4. Пять правильных многогранников

Естественно спросить, существуют ли кроме платоновых тел другие правильные многогранники. Как показывают следующие простые соображения, ответ должен быть отрицательным. Пусть {p, q} - произвольный правильный многогранник. Так как его гранями служат правильные р-угольники, их внутренние углы, как нетрудно показать, равны (180 - 360/р) или 180 (1 - 2/р) градусам. Так как многогранник {p, q} выпуклый, сумма всех внутренних углов по граням, примыкающим к любой из его вершин, должна быть меньше 360 градусов. Но к каждой вершине примыкают q граней, поэтому должно выполняться неравенство

где символ < означает «меньше чем». После несложных алгебраических преобразований полученное неравенство приводится к виду

Нетрудно видеть, что p и q должны быть больше 2. Подставляя в (1) р = 3, мы обнаруживаем, что единственными допустимыми значениями q в этом случае являются 3, 4 и 5, т.е. получаем многогранники {3, 3}, {3, 4} и {3, 5}. При р = 4 единственным допустимым значением q является 3, т.е. многогранник {4, 3}, при р = 5 неравенству (1) также удовлетворяет только q = 3, т.е. многогранник {5, 3}. При p > 5 допустимых значений q не существует. Следовательно, других правильных многогранников, кроме тел Платона, не существует.

Все пять правильных многогранников перечислены в таблице, приведенной ниже. В трех последних столбцах указаны N0 - число вершин, N1 - число ребер и N2 - число граней каждого многогранника.

К сожалению, приводимое во многих учебниках геометрии определение правильного многогранника неполно. Распространенная ошибка состоит в том, что в определении требуется лишь выполнение приведенного выше условия (а), но упускается из виду условие (б). Между тем условие (б) совершенно необходимо, в чем проще всего убедиться, рассмотрев выпуклый многогранник, удовлетворяющий условию (б), но не удовлетворяющий условию (б). Простейший пример такого рода можно построить, отождествив грань правильного тетраэдра с гранью еще одного тетраэдра, конгруэнтного первому. В результате мы получим выпуклый многогранник, шестью гранями которого являются конгруэнтные равносторонние треугольники. Однако к одним вершинам примыкают три грани, а к другим - четыре, что нарушает условие (б). [1]

ПЯТЬ ПРАВИЛЬНЫХ МНОГОГРАННИКОВ

Название

Запись Шлефли

N0 (число вершин)

N1 (число ребер)

N2 (число граней)

Тетраэдр

{3, 3}

4

6

4

Куб

{4, 3}

8

12

6

Октаэдр

{3, 4}

6

12

8

Икосаэдр

{3, 5}

12

30

20

Додекаэдр

{5, 3}

20

30

12

Заключение

Итак, выполнив эту работу, я узнал много нового и интересного о правильных многогранниках, оказывается, что еще есть и полуправильные многогранники.

Изучая весь этот материал, я открыл удивительные вещи для себя: первыми правильные полуправильные многогранники изучали Платон и Архимед, а ведь они жили еще до нашей эры, и в наши дни многие ученые занимаются изучением многогранников. Значит, интерес к многогранникам не пропадет никогда, это такие необыкновенные фигуры, а главное, какие они красивые! Одно из самых главных свойств многогранников - это симметрия. Благодаря ей они и выглядят так необычно.

Свойства многогранников используются в различных сферах деятельности человека. Например, в архитектуре: почти все здания строятся с соблюдением симметрии. Многие знаменитые художники пишут свои картины, используя симметрию. За счет этого картины смотрятся более эффектно.

Таким образов вся наша жизнь наполнена многогранниками, с ними сталкивается каждый человек: и маленькие дети и зрелые люди.

Размещено на Allbest.ru


Подобные документы

  • Первые упоминания о правильных многогранниках. Классификация многогранников, их виды, свойства, теоремы о развертках выпуклых многогранников (Коши и Александрова). Создание моделей правильных многогранников с помощью разверток и методами оригами.

    курсовая работа [2,8 M], добавлен 18.01.2011

  • Выпуклые многогранники, теорема Эйлера. Свойства выпуклых многогранников. Определение правильного многогранника. Понятие полуправильных многогранников. Свойства ромбокубооктаэдра, кубооктаэдра, тетраэдра, октаэдра, икосаэдра, додекаэдра и куба.

    методичка [638,2 K], добавлен 30.04.2012

  • Свойства куба, тетраэдра, октаэдра. Прямые и наклонные призмы. Учение о многоугольниках Пифагора. Деление циферблата часов. Создание колеса со спицами и астрономических сооружений. Виды и свойства пирамид. Теории построения правильных многоугольников.

    презентация [1,4 M], добавлен 26.04.2015

  • Изучение однородных выпуклых и однородных невыпуклых многогранников. Определение правильных многогранников. Двойственность куба и октаэдра. Теорема Эйлера. Тела Архимеда. Получение тел Кеплера-Пуансо. Многогранники в геологии, ювелирном деле, архитектуре.

    презентация [4,9 M], добавлен 27.10.2013

  • Определение правильного многогранника, его сторон, вершин, отрезков, соединяющих вершины. Анализ особенностей, геометрических свойств и видов правильных многогранников. Правильные многогранники, которые встречаются в живой природе и архитектуре.

    презентация [1,2 M], добавлен 13.11.2015

  • Куб (гексаэдр) – представитель правильных выпуклых многогранников, его объем, сечения, площадь и свойства. Характеристика типов правильных многогранников в XIII книге "Начал" Евклида и идеалистической картине мира Платона. Отношение к кубу в философии.

    презентация [531,0 K], добавлен 03.11.2011

  • Определение многогранника, его сторон и вершин, отрезков, соединяющих вершины. Описание основания, боковых граней и высоты призмы. Правильная и усеченная пирамида. Теорема Эйлера. Анализ особенностей и геометрических свойств правильных многогранников.

    презентация [6,5 M], добавлен 27.10.2013

  • Фигуры вращения правильных многогранников, использование их теории. Виды поверхностей в фигурах вращения. Теорема о пересечении гиперболической и цилиндрической поверхностей вращения. Классификация задач на вращение многогранников и вычисление объемов.

    реферат [1,1 M], добавлен 25.09.2009

  • Различные виды правильных и полуправильных многогранников, их основные свойства. Многогранные поверхности, многогранники, топологические, простейшие и правильные многогранники. Грани, ребра и вершины поверхности многогранника. Пирамиды и призмы.

    курсовая работа [1,7 M], добавлен 21.08.2013

  • Бинарная алгебраическая операция. Разновидности групп, использование рациональных чисел вместо вещественных. Действие группы на множестве. Группа симметрий тетраэдра. Формулировка и доказательство леммы Бернсайда о количестве орбит. Задачи о раскрасках.

    курсовая работа [822,9 K], добавлен 25.02.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.