История возникновения натуральных чисел и нуля

Зарождение счета в древности. Появление систем счисления. Письменная нумерация у древних народов. История возникновения понятия натурального числа. Счет как основа арифметики. Натуральный ряд чисел. Функции натуральных чисел. История возникновения нуля.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 29.01.2012
Размер файла 55,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и молодежной политики Забайкальского края

Государственное образовательное учреждение

Среднего профессионального образования

"Петровск-Забайкальский профессионально-педагогический техникум"

РЕФЕРАТ

по математике

Тема: " История возникновения натуральных чисел и нуля "

Выполнил:

Михрин Дмитрий Юрьевич

г. Петровск-Забайкальский 2011г.

Содержание

  • Введение
  • 1. Возникновение числа
  • Зарождение счета в глубокой древности
  • Пальцевой счёт
  • Появление систем счисления
  • Письменная нумерация у древних народов
  • Нумерация государств Древнего Востока и Рима
  • Числа народов Средней Азии
  • Нумерация на Руси
  • 2. История возникновения понятия натурального числа
  • 3. Счет как основа арифметики. Натуральный ряд чисел
  • 4. Натуральные числа, основные функции натуральных чисел
  • 5. История возникновения нуля
  • Ноль в других культурах
  • Заключение
  • Список литературы

Введение

Число является одним из основных понятий математики. Понятие числа развивалось в тесной связи с изучением величин; эта связь сохраняется и теперь. Во всех разделах современной математики приходится рассматривать разные величины и пользоваться числами. Современный человек в повседневной жизни постоянно сталкивается с числами и цифрами. Что же понимается под словом "число"? Первоначально понятие отвлеченного числа отсутствовало, число было "привязано" к тем предметам, которые пересчитывали. Отвлеченное понятие натурального числа появляется вместе с развитием письменности. Первое научное определение числа дал Эвклид в своих "Началах", которое он, очевидно унаследовал от своего соотечественника Эвдокса Книдского: "Единица есть то, в соответствии с чем каждая из соответствующих вещей называется одной. Число есть множество, сложенное из единиц". Так определял понятие числа и математик Магницкий в своей "Арифметике" (1703г.). Еще раньше Эвклида Аристотель дал такое определение: "Число есть множество, которое измеряется с помощью единиц". В своей "Общей арифметике" (1707г.) Исаак Ньютон пишет: "Под числом мы подразумеваем не столько множество единиц, сколько абстрактное отношение какой-нибудь величины к другой величине такого же рода, взятой за единицу…. Целое число есть то, что измеряется единицей…". В настоящее время, математик С.Ф. Клюйков также внес свой вклад в определение числа: "Числа - это математические модели реального мира, придуманные человеком для его познания".

Считается, что термин "натуральное число" впервые применил римский государственный деятель, философ, автор трудов по математике и теории музыки Боэций (480-524г. г.), но еще греческий математик Никомах из Геразы говорил о натуральном, то есть природном ряде чисел. Понятием "натуральное число" в современном его понимании последовательно пользовался французский математик Даламбер (1717-1783г. г.).

Вопрос об обосновании понятия натурального числа долгое время в науке не ставился. Понятие натурального числа столь привычно и просто, что не возникало потребности в его определении в терминах каких-либо простых понятий. При работе над рефератом появилась возможность подробнее узнать историю возникновения числа, и понятия натурального числа.

Цель работы:

1. Изучить историю возникновения натуральных чисел и нуля:

1.1. Ознакомиться с историей возникновения числа;

1.2. Рассмотреть историю возникновения понятия натурального числа, указать основные функции натурального числа;

1.3. Выяснить, что означает натуральный ряд чисел и что представляет собой число как элемент натурального ряда;

1.4. Ознакомиться с понятием "ноль", историей возникновения нуля.

1. Возникновение числа

Зарождение счета в глубокой древности

Наши первоначальные представления о числе и форме относятся к очень отдаленной эпохе древнего каменного века - палеолита. Пока не произошёл переход от простого собирания пищи к активному её производству, от охоты и рыболовства к земледелию, люди мало продвинулись в понимании числовых величин и пространственных отношений. Самым трудным этапом, который прошло человечество при выработке понятия о числе, считается выделение им понятия единицы из понятия "много". Оно произошло, по всей вероятности, ещё тогда, когда человечество находилось на низшей ступени развития. В.В. Бобынин объясняет такое выделение тем, что человек обычно захватывает рукой один предмет, а это, по его мнению, и выделило единицу из множества. Таким образом, начало счисления Бобынин мыслит как создание системы, состоящей из двух представлений: единица и неопределенное множество.

Так, например, племя ботокудов, жившее в Бразилии, выражало числа только словами "один" и "много". Появление элемента "два" объясняется выявлением возможности взять по одному предмету в каждую руку. На первоначальном этапе счёта человек связывал это понятие с понятием обеих рук, в которых находится по одному предмету в каждой, "три" характеризовалось поднятием обеих рук и указанием на ноги. Отсюда сравнительно характерно произошло выделение и понятие "четыре", так как с одной стороны, к этому побуждало сопоставление двух рук и двух ног, а с другой - возможность поместить по одному предмету у каждой ноги.

Дальнейшее развитие счета относится, вероятно, к той эпохе, когда сложилось первобытно-коммунистическое общество с соответствующим распределением пищи, одежды и орудия. Эти обстоятельства вынудили человека так или иначе вести счет общего имущества, сил врага, с которым приходилось вступать в борьбу за овладение новыми территориями. Процесс счета уже не мог остановиться на четырех и должен был развиваться далее и далее.

На этой ступени развития человек уже отказывается от необходимости брать пересчитываемые предметы в руку или класть к ногам. В математику входит первая абстракция, заключающаяся в том, что пересчитываемые предметы заменяются какими-либо другими однородными между собой предметами или знаками: камешками, узелками, ветками, зарубками. Операция производится по принципу взаимно-однозначного соответствия: каждому пересчитываемому предмету в соответствие один из предметов, выбранных в качестве орудия счета (то есть один камешек, один узелок на веревке и т.д.). Следы такого рода счета сохранились у многих народов и до настоящего времени. Иногда такие примитивные орудия счета (камешки, раковины, косточки) нанизывали на шнурок или палочку, чтобы не растерять. Это впоследствии привело к созданию более совершенных счётных приборов, сохранивших своё значение и до наших дней: русские счёты и сходный с ними китайский суан-пан.

Пальцевой счёт

Развитие счёта пошло значительно быстрее, когда человек догадался обратиться к самому близкому ему, самому естественному счётному аппарату - к своим пальцам. Быть может, первым актом счёта по пальцам было оказание предмета, указательным пальцем; тут палец сыграл роль единицы. Участие пальцев в счёте помогло человеку переступить за число четыре, так как когда все пальцы на одной руке стали считаться равноценными единицами, это сразу позволило довести счёт до пяти. Дальнейшее развитие счёта потребовало усложнения счётного аппарата, и человек нашёл выход, привлекая к счёту сначала пальцы второй руки, а затем, распространяя свой приём на пальцы ног: для племён, не носивших обуви, использование пальцев ног было вполне естественным. Так, для выражения числа "двадцать" индейцы из Южной Америки противопоставляют пальцы на руках пальцам на ногах.

Словесный счет начал развиваться, лишь когда ведущей формой производства стало сельское хозяйство. Обладатели полей, домашних животных, вынуждены были не только считать принадлежащие им объекты, но и запоминать их число, а это и толкнуло человека путь создания именованных чисел. Сначала запоминание проводилось весьма громоздким и неуклюжим способом: путем восстановления в памяти внешних признаков запоминаемых предметов. Например, обладатель стада волов запоминал количество принадлежащих ему животных по тем признакам, что один вол серый, другой - черный и т.д. Разумеется, такой способ запоминания не мог быть пригоден, когда число запоминаемых объектов было большим.

Следующей ступенью в развитии наименования чисел надо признать появление описательных выражений совокупности нескольких единиц. Например, вместо наименования числа, выражающего два предмета, употреблялась фраза "столько, сколько у меня рук", наименование четыре передавалось фразой: "столько, сколько ног у животного". Итак, словесными выражениями нескольких предметов явилось преимущественно части тела человека и животного.

В дальнейшем эти описания выражения у многих народов заменились наименованием соответствующих слов, и таким образом эти наименования закрепились за числами. Так, число два стало выражаться словами, обозначающими "уши", "руки", "крылья"; четыре - "нога страуса" (четырехпалая) и пр.

Пальцевой счет постепенно приводил к упорядочению счета, и человек стихийно приходил к упрощению словесного выражения чисел. Так, например, выражение, которое должно соответствовать числу 11 - "десять пальцев на обеих руках и один палец на одной ноге" - упрощалось в "палец на ноге". Подобного рода сокращения в то же время приводили как бы к выделению единиц из высшего разряда.

Появление систем счисления

Переход человека к пальцевому счету привел к созданию нескольких различных систем счисления. Самой древней из пальцевых систем счисления считается пятеричная. Эта система, как полагают, зародилась и наибольшее распространение получила в Америке. Её создание относится к этой эпохе, когда человек считал по пальцам одной руки. До последнего времени у некоторых племен пятеричная система сохранилась еще в чистом виде (например, у жителей Полинезии и Меланезии).

Дальнейшее развитие систем счисления пошло по двум путям. Племена, не остановившиеся на счете по пальцам на одной руке, перешли к счету по пальцам второй руки и далее - по пальцам ног. При этом часть племен остановилась на счете пальцев только на руках и этим положило основу для десятичной системы счисления, а другая часть племен, вероятно большая, распространила счет на пальцы ног и тем самым создало предпосылки на систему с основанием 20. Такая система получила распространение главным образом среди значительной части индейских племен Северной Америки и Туземных обитателей Центральной и Южной Америки, а так же в северной части Сибири и в Африке.

Десятичная система счисления является преобладающей у народов Европы. Однако это не означает, что в Европе эта система всегда была единственной: некоторые народы перешли к десятичной системе уже в более поздние времена, а ранние пользовались другой системой.

Естественной единицей высшего разряда при возникновении двадцатеричной системы явился "человек" как обладатель 20 пальцев. В этой системе 40 выражается как "два человека", 60 - "три человека" и т.д. Двадцатеричная система имеет большой недостаток: для её словесного выражения надо иметь 20 различных названий для основных чисел. Поэтому, когда у некоторых племен развилась десятичная система счисления, то и многие другие племена, употреблявшие двадцатеричную, постепенно отошли от нее, переняв десятичную. Некоторые племена в качестве счетного аппарата применяли не сами пальцы рук, а их суставы. В этом случае счет иногда развивался тоже достаточно продуктивно и оформлялся в стройные системы. Здесь процесс счета протекал таким образом: большой палец одной руки является счетчиком суставов остальных пальцев этой руки; т.к. на каждом из остальных четырех пальцев этой руки содержится по три сустава, то следующий за суставом выше единицей являлось число 12, что и послужило двенадцатеричной системой счисления. Этот процесс иногда не останавливался на двенадцати, а продолжался далее, причем каждый палец другой руки служил единицей высшего разряда, т.е. представлял собой 12, и после отсчета всех пальцев на второй руке создавалась новая единица высшего разряда 12х5, т.е.60.

Следы двенадцатеричной и шестнадцатеричной систем счисления сохранились и до нашего времени. Стоит вспомнить хотя бы счет часов в сутках, измерение углов градусами, минутами и секундами.

Так постепенно, под влиянием потребностей экономического характера, человечество создавало свои методы счета и достигло, наконец, стройного метода, который в дальнейшем сознательного совершенствовался и упрощался, пока не превратился в метод, которым и пользуется современная математика.

Письменная нумерация у древних народов

Если развитие трудовых процессов и появление собственности заставили человека изобрести числа и их названия, то дальнейший рост экономических потребностей у людей вел их по пути все большего и большего расширения и углубления понятия о числе. Особенно значительные сдвиги в этом смысле произошли, когда возникли государства с более или менее сложным государственным аппаратом, потребовавшим учета имущества и создание налоговой системы, и когда товарообмен перешел в стадию развития торговли с применением денежной системы. С одной стороны, это повлекло за собой зарождение письменной нумерации, а с другой - стали развиваться счетные операции, т.е. появились действия над числами.

Развитие числовой записи всегда сопутствовало общему подъёму культурного уровня народов, а потому, протекало наиболее интенсивно в тех странах, которые быстро шли по пути развития государственности.

Среди народов земного шара в наиболее благоприятных условиях для развития их экономической и политической жизни были такие, которые обитали на стыке трех материков: Европы, Африки и Азии, а также народы, занимавшие территории полуострова Индостан и современного Китая. Государства, расположенные на этих территориях, явились первыми в истории человечества государствами, где мы находим зародыш современных наук и математики в частности.

Нумерация государств Древнего Востока и Рима

Расцвет вавилонского государства относится ко второй половине XVIII в. до н.э. Продукты сельского хозяйства (зерно, фрукты, скот) являлись предметами вывоза в соседние страны. Расцвет торговли повлек за собой развитие денежной системы мер. В Вавилоне была создана система мер аналогичная нашей метрической, только в основе её лежало не число 10, а число 60. Полностью эта система выдерживалась у вавилонян для измерения времени и углов, и мы унаследовали от них деление часа и градуса на 60 минут, а минуты на 60 секунд.

Начальные понятия математики, зародившиеся в Древнем Китае, послужили развитию математической культуры соседних народов, которые занимали территорию современной Кореи Индокитая и с особенности Японии. В Китае рано начали накапливаться сведения математического характера и появилась запись чисел. При этом китайские иероглифические цифры были по записи еще сложнее египетских. Но, помимо этих иероглифических цифр, в Китае имели распространение и более простые цифровые знаки, употреблявшиеся при торговых операциях.

Запись чисел производилась столбцами сверху вниз. Большим преимуществом китайской записи чисел было введение в употребление нуля для выражения отсутствующих разрядов. На заре человеческой культуры в развитии математики Китай шёл далеко впереди Вавилона и Египта.

Метод записи чисел у римлян, заимствован у древних этрусков - одного из племен Древней Италии. В этой записи сохранились следы пятеричной системы счисления, и числа выражались при помощи букв. Для обозначения нуля знака не было. В записях они придерживались принципа сложения и вычитания: числа, написанные справа, прибавлялись, а числа, написанные слева, вычитались от числа, написанного рядом с ним. Вследствие затруднительности вычислений, римляне прибегали к помощи пальцевого счета или абака.

Особенно ценный вклад в арифметику внесен индийцами. В этом отношении математика обязана индийцам упорядочением числовой записи при помощи введения цифр для десятичной системы счисления и установления принципа поместного значения цифр.

В то время как у греков, евреев, сирийцев и т.д. для записи чисел употреблялось до 27 различных цифровых знаков, у индийцев число таких цифровых знаков снизилось до 10, включая и обозначение нуля. Что касается позиционной системы, её зачатки были еще у вавилонян, но там эта система применялась для шестидесятеричного счета, а индийцы ввели её для десятичного. Наконец, применение знака для нуля при позиционной системе дало большое преимущество перед записью чисел у вавилонян.

Числа народов Средней Азии

Начиная с VII в. в истории народов, входящих в состав государств Средней Азии и Ближнего Востока значительную роль начинает играть арабское государство. Из мелких арабских государств в VII-VIII вв., был создан арабский халифат - государство, занимающее огромную территорию. Первым, по времени, крупным математиком у народов, входивших в состав халифата, мы назовем великого узбекского (хорезмийского) математика и астролога IX в. Мухаммеда бен Мусса аль-Хорезми (2-я половина VIII в. - между 830-840). Сочинение аль-Хорезми по арифметике дошло до нашего времени только в переводе на латинский язык. Оно сыграло значительную роль в развитии европейской математики, так как именно в нем европейцы познакомились с индийскими методами записи чисел, то есть с системой индийских цифр, с употреблением нуля и с помесным значением цифр. Вследствие того, что сведения эти были получены европейцами из книги, автор которой жил в арабском государстве и писал на арабском языке, индийские цифры десятичной системы стали неправильно именоваться "арабскими цифрами".

Нумерация на Руси

Восточно-славянские племена, древние предки русской, украинской и белоруской народностей начали формироваться около 2-3 т. лет до н.э. В X в., в княжение Владимира Святославовича (? - 1015), древнерусское государство (Киевская Русь) достигло наибольшего расцвета и могущества. На Руси в эту эпоху параллельно с общим развитием культуры шло сравнительно быстрое распространение сведений из математики. Первым русским памятником математического содержания до настоящего времени считается рукописное сочинение новгородского монаха Кирика, написанное им в 1136 г. и носящее заголовок "Критика диакона и доместика Новгородского Антониева монастыря учение им же ведати человеку числа всех лет". Основные задачи, которые разрешаются Кириком, хронологического порядка: вычисление времени, протекшего между каким-либо событием. При вычислениях Кирик пользовался той системой нумерации, которая называлась малым перечнем и выражалась следующими наименованиями: 10000 - тьма, 100 000 - легион, или неведий, 1 000 000 - леодр.

Кроме малого перечня, в Древней Руси существовал еще больший перечень, который давал возможность оперировать с очень большими числами. В системе перечня основные разрядные единицы имели те же наименования, что и в малом, но соотношения между этими единицами были иные, а именно:

Тысяча тысяч - тьма; Тьма тем - легион, или певедий;

Легион легионов - леодр; Леодр леодров - ворон;

10 воронов - колода.

Единицы, десятки и сотни изображались славянскими буквами с поставленным над ними знаком, называемым титло, для отличия цифр от букв. Тьма, легион и леодр изображались теми же буквами, но для отличия от единиц, десятков, сотен и тысяч они обводились кружками.

Славянские нумерации употреблялись в России до XVI в., лишь в этом веке в нашу страну постепенно стала проникать десятичная позиционная система счисления. Она окончательно вытеснила славянскую нумерацию при Петре I.

натуральное число ноль счисление

2. История возникновения понятия натурального числа

Понятие натурального числа, вызванное потребностью счёта предметов, возникло ещё в доисторические времена. Процесс формирования понятия натурального числа протекал следующим образом. На низшей ступени первобытного общества понятие отвлеченного числа отсутствовало. Это не значит, что первобытный человек не мог отдавать себе отчёта о количестве предметов конкретно данной совокупности, например о количестве людей, участвующих в охоте, о количестве озёр, в которых можно ловить рыбу, и т.д. Но в сознании первобытного человека ещё не сформировалось то общее, что есть в объектах такого рода, как например, "три человека", "три озера" и т.д. Анализ языков первобытных народностей показывает, что для счёта предметов различного рода употреблялись словесные обороты. Слово "три" в контекстах "три человека", "три лодки" передавались различно. Конечно, такие именованные числовые ряды были очень короткими и завершались индивидуализированным понятием ("много") о большом количестве тех или других предметов, которое тоже являлось именованным, то есть выражалось разными словами для предметов разного рода, такими, как "толпа", "стадо", "куча" и т.д.

Источником возникновения понятия отвлечённого числа является примитивный счёт предметов, заключающийся в сопоставлении предметов данной конкретной совокупности с предметами некоторой определённой совокупности, играющей как бы роль эталона.

У большинства народов первым таким эталоном являются пальцы (пальцевой счет, о котором говорилось ранее), что без сомнений подтверждается языковедческим анализом названий первых чисел. На этой ступени число становится отличенным, не зависящим от качества считаемых предметов, но вместе с тем выступающим во вполне конкретном осуществлении, связанном с природой эталонной совокупности. Расширяющиеся потребности счёта заставили людей употреблять другие счётные эталоны, такие, как, например, зарубки на палочке. Для фиксации сравнительно больших чисел стала использоваться новая идея - обозначения некоторого определенного числа (у большинства народов - десять) новым знаком, например зарубкой на другой палочке.

С развитием письменности возможности воспроизведения числа значительно расширились. Сначала числа стали обозначаться чёрточками на материале, служащем для записи (папирус, глиняные таблички и т.д.). Затем были введены другие знаки для больших чисел. Вавилонские клинописные обозначения числа, так же, как и сохранившиеся до наших дней "римские цифры", ясно свидетельствуют именно об этом пути формирования обозначения для числа. Шагом вперёд была индийская позиционная система счисления, позволяющая записать любое натуральное число при помощи десяти знаков - цифр. Таким образом, параллельно с развитием письменности понятие натурального числа закрепляется в форме слов (в устной речи) и в форме обозначения специальными знаками (в письменной).

Важным шагом в развитии понятия натурального числа является осознание бесконечности натурального ряда чисел, т.е. потенциальной возможности его безграничного продолжения.

Вопрос об обосновании понятия натурального числа долгое время в науке не ставился. Понятие натурального числа столь привычное, что не возникло потребности в его определении в терминах каких - либо более простых понятий. Лишь в середине 19 в. под влиянием развития аксиоматического метода в математике, с одной стороны, и критического пересмотра основ математического анализа - с другой, назрела необходимость обоснования понятия количественного натурального числа. Отчётливое определение понятия натурального числа на основе понятия множества (совокупности предметов) было дано в 70-х гг. 19в. в работах Г. Кантора. Сначала он определяет понятие равномощности совокупностей. Именно, две совокупности называются равномощными, если составляющие их предметы могут быть сопоставлены по одному. Затем число предметов, составляющих данную совокупность, определяется как то общее, что имеет данная совокупность и всякая другая, равномощная ей совокупность предметов, независимо от всяких качественных особенностей этих предметов. Такое определение отражает сущность натурального числа как результата счёта предметов, составляющих данную совокупность.

Действительно, на всех исторических уровнях счёт заключается в сопоставлении по одному из считаемых предметов и предметов, составляющих "эталонную" совокупность (на ранних ступенях - пальцы рук и зарубки на палочке и т.д. на современном этапе - слова и знаки, обозначающие число. Определение, данное Кантором, было отправным пунктом для обобщения понятия количественного числа в направлении количественной характеристики бесконечных множеств.

Числа возникли из потребности счета и измерения и претерпели длительный путь исторического развития.

Было время, когда люди не умели считать. Чтобы сравнить конечные множества, устанавливали взаимно однозначное соответствие между данными множествами или между одним из множеств и подмножеством другого множества, т.е. на этом этапе человек воспринимал численность предметов без их пересчета. Например, о численности группы из двух предметов он мог говорить: "Столько же, сколько рук у человека", о множестве из пяти предметов - "столько же, сколько пальцев на руке". При таком способе сравниваемые множества должны были быть одновременно обозримы.

В результате очень долгого периода развития человек пришел к следующему этапу создания натуральных чисел - для сравнения множеств стали применять множества-посредники: мелкие камешки, раковины, пальцы. Эти множества-посредники уже представляли собой зачатки понятия натурального числа, хотя и на этом этапе число не отделялось от сосчитываемых предметов: речь шла, например, о пяти камешках, пяти пальцах, а не о числе "пять" вообще. Названия множеств-посредников стали использовать для определения численности множеств, которые с ними сравнивались. Так, у некоторых племен численность множества, состоящего из пяти элементов, обозначалась словом "рука", а численность множества из 20 предметов - словами "весь человек".

Только после того как человек научился оперировать множествами-посредниками, установил то общее, что существует, например, между пятью пальцами и пятью яблоками, т.е. когда произошло отвлечение от природы элементов множеств-посредников, возникло представление о натуральном числе. На этом этапе при счете, например, яблок, не перечислялись уже "одно яблоко", "два яблока" и т.д., а проговаривались слова "один", "два" и т.д. Это был важнейший этап в развитии понятия числа. Историки считают, что произошло это в каменном веке, в эпоху первобытнообщинного строя, примерно в 10-5 тысячелетии до н.э.

Со временем люди научились не только называть числа, но и обозначать их, а также выполнять над ними действия. Вообще натуральный ряд чисел возник не сразу, история его формирования длительная. Запас чисел, которые употребляли, ведя счет, увеличивался постепенно. Постепенно сложилось и представление о бесконечности множества натуральных чисел. Так, в работе "Псаммит" - исчисление песчинок - древнегреческий математик Архимед (III в. до н.э.) показал, что ряд чисел может быть продолжен бесконечно, и описал способ образования и словесного обозначения сколь угодно больших чисел.

Возникновение понятия натурального числа было важнейшим моментом в развитии математики. Появилась возможность изучать эти числа независимо от тех конкретных задач, в связи с которыми они возникли. С развитием понятия натурального числа как результата счета предметов в обиход включаются действия над числом. Действия сложения и вычитания возникают сначала как действия над самими совокупностями в форме объединения двух совокупностей в одну и отделения части совокупности. Умножение, по-видимому, возникло в результате счета равными частями (по два, по три…), деление - как деление совокупности на равные части. Лишь во многовековом опыте сложилось представление об отвлеченном характере этих действий, о независимости количественного результата действия от природы предметов, составляющих совокупности, о том, что, например, два предмета и три предмета составят пять предметов независимо от природы этих предметов. Тогда стали разрабатывать правила действий, изучать их свойства, создавать методы для решения задач, т.е. начинается развитие науки о числе. Теоретическая наука, которая стала изучать числа и действия над ними, получила название "арифметика". Слово "арифметика" происходит от греческого arithmos, что значит "число". Следовательно, арифметика - это наука о числе.

Арифметика возникла в странах Древнего Востока: Вавилоне, Китае, Индии и Египте. Накопленные в этих странах математические знания были развиты и продолжены учеными Древней Греции. В средние века большой вклад в развитие арифметики внесли математики Индии, стран арабского мира и Средней Азии, а начиная с XIII века - европейские ученые.

Термин "натуральное число" впервые употребил в V в. римский ученый А. Боэций, который известен как переводчик работ известных математиков прошлого на латинский язык и как автор книги "О введении в арифметику", которая до XVI века была образцом для всей европейской математики.

Во второй половине XIX века натуральные числа оказались фундаментом всей математической науки, от состояния которого зависела и прочность всего здания математики. В связи с этим появилась необходимость в строгом логическом обосновании понятия натурального числа, в систематизации того, что с ним связано. Так как математика XIX века перешла к аксиоматическому построению своих теорий, то была разработана аксиоматическая теория натурального числа. Большое влияние на исследование природы натурального числа оказала и созданная в XIX веке теория множеств. Конечно, в созданных теориях понятия натурального числа и действий над ними получили большую абстрактность, но этим всегда сопровождается процесс обобщения и систематизации отдельных фактов.

Дальнейшие расширения понятия числа обусловлены уже не непосредственными потребностями счета и измерения, но явились следствием развития математики.

3. Счет как основа арифметики. Натуральный ряд чисел

Как мы ранее рассмотрели, арифметика - это наука, изучающая числа и действия над ними. Счет является основой арифметики. Прежде чем научиться вычислять, надо научиться считать и уметь записывать числа. Для счета люди пользуются названиями чисел и особыми знаками для краткого их обозначения. Знаки для изображения чисел называются цифрами. Практически на всем земном шаре алфавитом в языке цифр служат десять цифр (от 0 до 9), эти цифры называются арабскими. Девять из них используются для обозначения первых девяти натуральных чисел, а для обозначения отсутствия предметов употребляется число нуль, которое изображается цифрой 0. Все числа: 1, 2, 3, 4,…17,18 и т.д. без конца называют натуральным рядом чисел, а сами числа - натуральными числами. В натуральном ряду каждое число, начиная с 2, на единицу больше предыдущего. Натуральные числа получаются при счете предметов и при измерении величин. Но если при измерении появляются числа, отличные от натуральных, то счет приводит только к числам натуральным. Чтобы вести счет, нужна последовательность числительных, которая начинается с единицы и которая позволяет осуществлять переход от одного числительного к другому и столько раз, сколько это необходимо. Иначе говоря, нужен отрезок натурального ряда. Поэтому, решая задачу обоснования системы натуральных чисел, в первую очередь надо было ответить на вопрос о том, что же представляет собой число как элемент натурального ряда. Ответ на него был дан в работах двух математиков - немца Грассмана и итальянца Пеано. Они предложили аксиоматику, в которой натуральное число обосновывалось как элемент неограниченно продолжающейся последовательности.

Важным шагом в развитии понятия натурального числа является осознание бесконечности натурального ряда чисел, т.е. потенциальной возможности его безграничного продолжения.

Долго и трудно добиралось человечество до 1-го уровня обобщения чисел. Сто веков понадобилось, чтобы выстроить ряд самых коротких натуральных чисел от единицы до бесконечности. Натуральных потому, что ими обозначались (моделировались) реальные неделимые объекты: люди, вещи, животные…

4. Натуральные числа, основные функции натуральных чисел

Натуральные числа являются целыми числами. К целым числам относится и нуль, но оно не принадлежит к натуральным числам. Не следует смешивать понятия "числа" и "цифры". Различных чисел можно записать сколько угодно, а цифр - только десять. Любое натуральное число мы записываем с помощью этих десяти цифр. Производя счет предметов, используют натуральное число как характеристику порядка. В задачах, связанных с измерением величин, число выступает как значение величины при выбранной единице, т.е. как мера величины. Большое внимание уделяется еще одной роли числа - как компоненту вычислений. Таким образом, натуральное число имеет много функций.

Основными функциями натуральных чисел являются:

1. Характеристика количества предметов;

2. Характеристика порядка предметов, размещенных в ряд.

В соответствии с этими функциями возникли понятия порядкового числа (первый, второй и т. т.) и количественного числа (один, два и т.д.). В частности, расположения в ряд считаемых предметов и последующий их пересчёт с применением порядковых чисел является наиболее употребляемым с незапамятных времён способом счёта предметов (так, если последний из пересчитываемых предметов окажется седьмым, то это и означает, что имеется семь предметов.).

5. История возникновения нуля

Ноль (нуль) (от лат. Nullus - никакой) - название первой (по порядку) цифры в стандартных системах исчисления, а также математический знак, выражающий отсутствие значения данного разряда в записи числа в позиционной системе счисления. Цифра ноль, поставленная справа от другой цифры, увеличивает числовое значение всех левее стоящих цифр на разряд (соответственно, в десятичной системе счисления, умножает на десять.).

В Индии.

Главное преимущество введения индийцами методов записи чисел заключатся в том, что они значительно уменьшили количество цифр, применяли позиционную систему к десятичному счету и ввели в употребление знак нуля. Введение нуля, цифр и принципа поместного их значения облегчило вычислительные операции над числами, а потому арифметические вычисления и получили в Индии значительное развитие.

Индийцы называли знак, обозначающий отсутствие какого-либо разряда в числе, словом "сунья", что значит пустой (разряд, место). Арабы перевели это слово по смыслу и получили слово "сыфр", от него и ведет происхождение слово "цифра". Впервые цифру ноль использовал в своих рассказах Харязми. Первое достоверное сведение о записи нуля относится к 876г.; в настенной надписи из Гвалиора (Индия) имеется число 270. Некоторые исследователи предполагают, что нуль был заимствован у греков, которые ввели в качестве нуля букву "о" в шестидесятеричную систему счисления, употребляемую ими в астрономии. Другие, наоборот, считают, что ноль пришел в Индию с востока, он был изобретен на границе индийской и китайской культур. Обнаружены более ранние надписи от 683 и 686г. г. в нынешних Камбодже в Индонезии, где нуль изображен в виде точки и малого кружка. Индийцы вначале изображали нуль точкой. Когда индийцы в V веке н.э. ввели знак нуля, они смогли оставить поразрядную систему счисления и развить абсолютную позиционную десятичную систему счисления, превосходство которой при счете если и не осознают, то повседневно используют сотни миллионов людей.

В Европе.

Леонардо Пизанский (1228г.) употребил для передачи арабского термина "сифр" слово zephirum (латинское слово zephyrus - зефир означало западный ветер), одновременно с ним другой главный поборник индийской нумерации в Европе, Иордан Неморарий (1237г.), употребляет арабскую форму cifra. В Вене хранится рукописная арифметика XV века, приобретенная в Константинополе (Стамбуле), в которой употребляются греческие числовые знаки вместе с обозначением нуля точкой. В латинских переводах арабских трактатов 12 века знак нуля - 0 называется кружком - circulus.

Термин "никакой знак" появляется в рукописных латинских переводах и обработках арабских трудов 12века. Термин "nulla" имеется в рукописи Шюке 1484г. и в первой печатной Тревизской (по месту издания) арифметике (1478г.). Депман И.Я. История Арифметики. - изд. "Просвещение", Москва, 1965, - с. 89.

С начала 16 века в немецких руководствах слово "цифра" получает значение современное, слово "нуль" входит в повсеместное употребление в Германии и в других странах, сначала как слово чужое и в латинской грамматической форме, постепенно принимая форму, свойственную данному национальному языку.

В России.

Л. Магницкий в своей "Арифметике" называет знак 0 "цифрой или ничем" (первая страница текста); на второй странице в таблице, в которой каждой цифре дается название, 0 называется "низачто". В конце 18 века во втором русском издании "Сокращения первых оснований математики" Х. Вольфа (1791г.) нуль еще называется цифрой. В математических рукописях 17века, употребляющих индийские цифры, 0 называется "оном" вследствие сходства с буквой о. Депман И.Я. История Арифметики. - изд. "Просвещение", Москва, 1965, - с. 90.

Ноль в других культурах

Майя. Майя использовали ноль в своей двадцатеричной системе счисления почти на тысячелетие раньше индийцев. Первая сохранившаяся стела с датой календаря майя датируется 10 декабря 36 года до н.э. Любопытно, что тем же самым знаком майянские математики обозначали и бесконечность, так как этот знак означал не ноль в европейском понимании слова, а "начало", "причину". Счет дней в календаре майя начинался с нулевого дня, который назывался Ахау.

Инки. В империи инков Тауантинсуйу для записи числовой информации использовалась узелковая система кипу, основанная на позиционной десятеричной системе счисления. Цифры от 1 до 9 обозначались узелками определенного вида, ноль - пропуском узелка в нужной позиции. Однако то, какое слово использовалось инками для обозначения нуля при чтении кипу неясно (в современном же языке кечуа ноль обозначает слово "отсутствующий", "пустой".

Заключение

На первых ступенях развития, понятие числа определялось потребностями счета и измерения, возникавшими в непосредственной практической деятельности человека. Затем число становится основным понятием математики, и дальнейшее развитие понятия числа определяется потребностями этой науки. Мир полон тайн и загадок. Современная наука встречается с величинами такой сложной природы, что для их изучения приходится изобретать все новые виды чисел.

Рассмотрев данную тему, можно с уверенностью сказать, что исторические сведения изменчивы, и со временем мы можем узнать много нового о том, что, казалось бы, уже известно, а также будет открыто что-то не менее интересное и, в настоящее время, неизученное.

Список литературы

1. Задачник-практикум по математике. Пособие для студентов-заочников факультетов подготовки учителей начальных классов пединститутов под ред. Н.Я. Виленкина. Москва "Просвещение", 1977. (132-135 стр.).

2. Марков С.Н. Курс истории математики: Учебное пособие. - Иркутск: Издательство иркутского университета, 1995. - 248с.

3. Стойлова Л.П., Виленкин Н.Я., Лаврова Н.Н. Математика. В 2ч. Ч1. Для студентов - заочников 1-2 курсов фак. подгот. учителей нач. классов пед. ин-тов; Моск. Гос. Пед. Ин-т. - М.: Просвещение, 1990. (93-119 стр.).

4. http://www.cultinfo.ru/ fulltext/1/001/008/122/518. htm

5. http://ru. wikipedia.org/wiki

Размещено на Allbest.ru


Подобные документы

  • Закон сохранения количества чисел Джойнт ряда в натуральном ряду чисел как принцип обратной связи чисел в математике. Структура натурального ряда чисел. Изоморфные свойства рядов четных и нечетных чисел. Фрактальная природа распределения простых чисел.

    монография [575,3 K], добавлен 28.03.2012

  • Числа натурального ряда, их закономерное периодическое изменение: сведение бесконечного к конечному путем выявления периодичности. Обоснование метода поиска простых чисел с помощью "решета" Баяндина. Закон динамического сохранения относительных величин.

    книга [359,0 K], добавлен 28.03.2012

  • Сумма n первых чисел натурального ряда. Вычисление площади параболического сегмента. Доказательство формулы Штерна. Выражение суммы k-х степеней натуральных чисел через детерминант и с помощью бернуллиевых чисел. Сумма степеней и нечетных чисел.

    курсовая работа [8,2 M], добавлен 14.09.2015

  • История отрицательных чисел: их отрицание в Древнем Египте, Вавилоне, Греции, узаконивание в Китае и Индии. Математические действия с ними. Подходы к определению положению нуля как натурального числа. Изучение отрицательных чисел в школьной программе.

    презентация [178,6 K], добавлен 13.05.2011

  • Характеристика истории изучения значения простых чисел в математике путем описания способов их нахождения. Вклад Пьетро Катальди в развитие теории простых чисел. Способ Эратосфена составления таблиц простых чисел. Дружественность натуральных чисел.

    контрольная работа [27,8 K], добавлен 24.12.2010

  • История возникновения и развития арабских цифр, особенности их написания, удобство по сравнению с другими системами. Знакомство с цифрами разных народов: системой счисления Древнего Рима, китайскими, деванагари и их развитием от древности, до наших дней.

    реферат [276,4 K], добавлен 22.01.2011

  • Свойства чисел натурального ряда. Периодическая зависимость от порядковых номеров чисел. Шестеричная периодизация чисел. Область отрицательных чисел. Расположение простых чисел в соответствии с шестеричной периодизацией.

    научная работа [20,2 K], добавлен 29.12.2006

  • Важная роль простых чисел (ПЧ) в криптографии, генерации случайных чисел, навигации, имитационном моделировании. Необходимость закономерности распределения ПЧ в ряду натуральных чисел. Цель: найти закономерность среди ПЧ + СЧ, а потом закономерность среди

    доклад [217,0 K], добавлен 21.01.2009

  • Изучение основных определений и теорем, связанных с полукольцом натуральных чисел, описание его нулевого, главного и двухпорожденного идеалов. Исследование проблемы нахождения констант Фробениуса для аддитивной полугруппы, порожденной линейной формой.

    курсовая работа [370,2 K], добавлен 12.06.2010

  • Как люди научились считать, возникновение цифр, чисел и систем счисления. Таблица умножения на "пальцах": методика умножения для чисел 9 и 8. Примеры быстрого счета. Способы умножения двузначного числа на 11, 111, 1111 и т.д. и трехзначного числа на 999.

    курсовая работа [66,8 K], добавлен 22.10.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.