Дифференциальное и интегральное исчисление

Вычисление площади фигуры с помощью двойного интеграла в полярных координатах. Расчет объема тела с помощью тройного интеграла. Исследование сходимости числового ряда. Разложение функции f(x) в ряд Фурье. Общее и частное решение дифференциального уравнени

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 22.01.2012
Размер файла 83,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Вариант №10

1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.

Решение:

1)

;

2) Производная по направлению:

2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).

Решение:

Преобразуем формулу в полярные координаты:

3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.

Тело, объем которого мы находим ограничено сверху z=, а снизу z=0,

х и y изменяются от 0 до 4.

4. Исследовать сходимость числового ряда

По признаку Даламбера:

, значит ряд расходится.

5. Найти интервал сходимости степенного ряда

Решение:

Интервал сходимости:

(-1< x < 1)

6. Вычислить определенный интеграл с точностью до 0.001, разложив подынтегральную функцию в степенной ряд и затем проинтегрировать его почленно.

Разложим подынтегральную функцию применяя таблицу простейших разложений:

Проинтегрируем ряд почленно:

7. Разложить данную функцию f(x) в ряд Фурье

Решение:

8. Найти общее решение дифференциального уравнения

Решение:

;

1.

интегрируем обе части

интегрируем обе части

Искомая функция:

9. Найти частное решение дифференциального уравнения , удовлетворяющее начальным условиям

Это линейное неоднородное дифференциальное уравнение II порядка. Составим характеристическое уравнение:

Т.к. корни действительные и одинаковые, то общее решение соответствующего однородного уравнения запишем в виде

интеграл функция дифференциальное уравнение

Правая часть уравнение может быть представлена в виде:

, где

Является корнем характеристического уравнения кратности 2.

Частное решение исходного уравнения будем искать в виде

Найдем первую и вторую производные частного решения, подставим их в исходное дифференциальное уравнение и приравняем коэффициенты при одинаковых степенях переменной х.

; А=5

Следовательно общее решение исходного (неоднородного) уравнения запишем в виде:

Найдем частное решение:

Частное решение:

Размещено на Allbest.ru


Подобные документы

  • Разложение функции в ряд Фурье, поиск коэффициентов. Изменение порядка интегрирования, его предел. Расчет площади фигуры, ограниченной графиками функций, с помощью двойного интеграла, объема тела, ограниченного поверхностями, с помощью тройного интеграла.

    контрольная работа [111,8 K], добавлен 28.03.2014

  • Расчет неопределенных интегралов, проверка результатов дифференцированием. Вычисление определенного интеграла по формуле Ньютона-Лейбница. Нахождение площади фигуры, ограниченной заданной параболой и прямой. Общее решение дифференциального уравнения.

    контрольная работа [59,8 K], добавлен 05.03.2011

  • Вычисление площади фигуры, ограниченной заданными линиями, с помощью двойного интеграла. Расчет двойного интеграла, перейдя к полярным координатам. Методика определения криволинейного интеграла второго рода вдоль заданной линии и потока векторного поля.

    контрольная работа [392,3 K], добавлен 14.12.2012

  • Задачи на нахождение неопределенного интеграла с применением метода интегрирования по частям. Вычисление площади, ограниченной заданными параболами. Решение дифференциального уравнения первого порядка. Исследование на сходимость ряда; признаки сходимости.

    контрольная работа [136,7 K], добавлен 16.03.2010

  • Нахождение частных производных, градиента функции. Вычисление интеграла, переход от двойного интеграла к последовательному, пределов интегрирования. Общее и частное решение дифференциального уравнения второго порядка. Применение признака Даламбера.

    контрольная работа [297,6 K], добавлен 11.05.2013

  • История интегрального исчисления. Определение и свойства двойного интеграла. Его геометрическая интерпретация, вычисление в декартовых и полярных координатах, сведение его к повторному. Применение в экономике и геометрии для вычисления объемов и площадей.

    курсовая работа [2,7 M], добавлен 16.10.2013

  • Вычисление пределов функций, производных функций с построением графика. Вычисление определенных интегралов, площади фигуры, ограниченной графиками функций. Общее решение дифференциального уравнения, его частные решения. Исследование сходимости ряда.

    контрольная работа [356,6 K], добавлен 17.07.2008

  • Понятие двойного интеграла, условия его существования, свойства и методы вычисления: сведение двойного интеграла к повторному для прямоугольной и криволинейной областей; двойной интеграл в полярных координатах; замена переменных; вычисление объемов тел.

    контрольная работа [321,9 K], добавлен 21.07.2013

  • Условия существования определенного интеграла. Приложение интегрального исчисления. Интегральное исчисление в геометрии. Механические приложение определенного интеграла. Интегральное исчисление в биологии. Интегральное исчисление в экономике.

    курсовая работа [1,9 M], добавлен 21.01.2008

  • Поиск площади фигуры, ограниченной графиками функций с помощью двойного интеграла. Получение вращением объема тела вокруг оси ОХ фигуры, ограниченной указанными линиями. Пределы интегрирования в двойном интеграле по области, ограниченной линиями.

    контрольная работа [166,9 K], добавлен 28.03.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.