Дифференциальные уравнения
Основные понятия об обыкновенных дифференциальных уравнениях. Обзор разновидностей дифференциальных уравнений 1-го порядка. Обобщенное однородное уравнение. Уравнение Бернулли. Дифференциальные уравнения в полных дифференциалах. Интегрирующий множитель.
Рубрика | Математика |
Вид | лекция |
Язык | русский |
Дата добавления | 18.12.2011 |
Размер файла | 136,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
2
Размещено на http://www.allbest.ru/
Дифференциальные уравнения
§ 1. Основные понятия об обыкновенных дифференциальных уравнениях
дифференциальное уравнение интегрирующий множитель
Определение 1. Обыкновенным дифференциальным уравнением n - го порядка для функции y аргумента x называется соотношение вида
(1.1),
где F - заданная функция своих аргументов. В названии этого класса математических уравнений термин «дифференциальное» подчеркивает, что в них входят производные (функции, образованные как результат дифференцирования); термин - «обыкновенное» говорит о том, что искомая функция зависит только от одного действительного аргумента.
Обыкновенное дифференциальное уравнение может не содержать в явном виде аргумент x, искомую функцию и любые ее производные, но старшая производная обязана входить в уравнение n-го порядка. Например
а) - уравнение первого порядка;
б) - уравнение третьего порядка.
При написании обыкновенных дифференциальных уравнений часто используются обозначения производных через дифференциалы:
в) - уравнение второго порядка;
г) - уравнение первого порядка,
образующее после деления на dx эквивалентную форму задания уравнения: .
Функция называется решением обыкновенного дифференциального уравнения, если при подстановке в него оно обращается в тождество.
Например, уравнение 3-го порядка
имеет решение .
Найти тем или иным приемом, например, подбором, одну функцию, удовлетворяющую уравнению, не означает решить его. Решить обыкновенное дифференциальное уравнение - значит найти все функции, образующие при подстановке в уравнение тождество. Для уравнения (1.1) семейство таких функций образуется с помощью произвольных постоянных и называется общим решением обыкновенного дифференциального уравнения n-го порядка, причем число констант совпадает с порядком уравнения: Общее решение может быть, и не разрешено явно относительно y(x): В этом случае решение принято называть общим интегралом уравнения (1.1).
Например, общим решением дифференциального уравнения является следующее выражение: , причем второе слагаемое может быть записано и как , так как произвольная постоянная , делённая на 2, может быть заменена новой произвольной постоянной .
Задавая некоторые допустимые значения всем произвольным постоянным в общем решении или в общем интеграле, получаем определенную функцию, уже не содержащую произвольных констант. Эта функция называется частным решением или частным интегралом уравнения (1.1). Для отыскания значений произвольных постоянных, а следовательно, и частного решения, используются различные дополнительные условия к уравнению (1.1). Например, могут быть заданы так называемые начальные условия при (1.2)
В правых частях начальных условий (1.2) заданы числовые значения функции и производных, причем, общее число начальных условий равно числу определяемых произвольных констант.
Задача отыскания частного решения уравнения (1.1) по начальным условиям называется задачей Коши.
§ 2. Обыкновенные дифференциальные уравнения 1-го порядка - основные понятия
Обыкновенное дифференциальное уравнение 1-го порядка (n=1) имеет вид: или, если его удается разрешить относительно производной: . Общее решение y=y(x,С) или общий интеграл уравнения 1-го порядка содержат одну произвольную постоянную. Единственное начальное условие для уравнения 1-го порядка позволяет определить значение константы из общего решения или из общего интеграла. Таким образом, будет найдено частное решение или, что тоже, будет решена задача Коши. Вопрос о существовании и единственности решения задачи Коши является одним из центральных в общей теории обыкновенных дифференциальных уравнений. Для уравнения 1-го порядка, в частности, справедлива теорема, принимаемая здесь без доказательства.
Теорема 2.1. Если в уравнении функция и ее частная производная непрерывны в некоторой области D плоскости XOY , и в этой области задана точка , то существует и притом единственное решение , удовлетворяющее как уравнению , так и начальному условию .
Геометрически общее решение уравнения 1-го порядка представляет собой семейство кривых на плоскости XOY, не имеющих общих точек и отличающихся друг от друга одним параметром - значением константы C. Эти кривые называются интегральными кривыми для данного уравнения. Интегральные кривые уравнения обладают очевидным геометрическим свойством: в каждой точке тангенс угла наклона касательной к кривой равен значению правой части уравнения в этой точке: . Другими словами, уравнение задается в плоскости XOY поле направлений касательных к интегральным кривым. Замечание: Необходимо отметить, что к уравнению приводится уравнение и так называемое уравнение в симметрической форме.
§ 3. Дифференциальные уравнения 1-го порядка с разделяющимися переменными
Определение. Дифференциальным уравнением с разделяющимися переменными называется уравнение вида (3.1)
или уравнение вида (3.2)
Для того, чтобы в уравнении (3.1) разделить переменные, т.е. привести это уравнение к так называемому уравнению с разделенными переменными, произвести следующие действия:
;
Теперь надо решить уравнение g(y)= 0. Если оно имеет вещественное решение y=a, то y=a тоже будет решением уравнения (3.1).
Уравнение (3.2) приводится к уравнению с разделенными переменными делением на произведение :
,
что позволяет получить общий интеграл уравнения (3.2):
(3.3)
Интегральные кривые (3.3) будут дополнены решениями , если такие решения существуют.
Пример.
Решить уравнение
.
Решение
Разделяем переменные:
.
Интегрируя, получаем
Далее из уравнений и находим x=1, y=-1. Эти решения - частные решения.
§ 4. Однородные дифференциальные уравнения 1-го порядка
Определение 1. Уравнение 1-го порядка называется однородным, если для его правой части при любых справедливо соотношение , называемое условием однородности функции двух переменных нулевого измерения.
Пример 1. Показать, что функция - однородная нулевого измерения.
Решение
,
что и требовалось доказать.
Теорема. Любая функция - однородна и, наоборот, любая однородная функция нулевого измерения приводится к виду .
Доказательство
Первое утверждение теоремы очевидно, т.к. . Докажем второе утверждение. Положим , тогда для однородной функции , что и требовалось доказать.
Определение 2 Уравнение (4.1)
в котором M и N - однородные функции одной и той же степени, т.е. обладают свойством при всех , называется однородным.
Очевидно, что это уравнение всегда может быть приведено к виду (4.2) , хотя для его решения можно этого и не делать.
Однородное уравнение приводится к уравнению с разделяющимися переменными с помощью замены искомой функции y по формуле y=zx, где z(x) - новая искомая функция. Выполнив эту подстановку в уравнении (4.2), получим: или или .
Интегрируя, получаем общий интеграл уравнения относительно функции z(x) , который после повторной замены дает общий интеграл исходного уравнения. Кроме того, если - корни уравнения , то функции - решения однородного заданного уравнения. Если же , то уравнение (4.2) принимает вид
и становится уравнением с разделяющимися переменными. Его решениями являются полупрямые: .
Замечание. Иногда целесообразно вместо указанной выше подстановки использовать подстановку x=zy.
§ 5. Дифференциальные уравнения, приводящиеся к однородным
Рассмотрим уравнение вида . (5.1)
Если , то это уравнение с помощью подстановки , где и - новые переменные, а и - некоторые постоянные числа, определяемые из системы
Приводится к однородному уравнению
Если , то уравнение (5.1) принимает вид
.
Полагая z=ax+by, приходим к уравнению, не содержащему независимой переменной.
Рассмотрим примеры.
Пример 1
Проинтегрировать уравнение
и выделить интегральную кривую, проходящую через точки: а) (2;2); б) (1;-1).
Решение
Положим y=zx. Тогда dy=xdz+zdx и
.
Сократим на и соберем члены при dx и dz:
.
Разделим переменные:
.
Интегрируя, получим
;
или , .
Заменив здесь z на , получим общий интеграл заданного уравнения в виде (5.2) или .
Это семейство окружностей , центры которых лежат на прямой y = x и которые в начале координат касаются прямой y + x = 0. Эта прямая y = -x в свою очередь частное решение уравнения.
Теперь режим задачи Коши:
А) полагая в общем интеграле x=2, y=2, находим С=2, поэтому искомым решением будет .
Б) ни одна из окружностей (5.2) не проходит через точку (1;-1). Зато полупрямая y = -x, проходит через точку и дает искомое решение.
Пример 2. Решить уравнение: .
Решение
Уравнение является частным случаем уравнения (5.1).
Определитель в данном примере , поэтому надо решить следующую систему
Решая, получим, что . Выполняя в заданном уравнении подстановку , получаем однородное уравнение . Интегрируя его при помощи подстановки , находим .
Возвращаясь к старым переменным x и y по формулам , имеем .
§ 6. Обобщенное однородное уравнение
Уравнение M(x,y)dx+N(x,y)dy=0 называется обобщенным однородным, если удается подобрать такое число k, что левая часть этого уравнения становится однородной функцией некоторой степени m относительно x, y, dx и dy при условии, что x считается величиной первого измерения, y - k_го измерения, dx и dy - соответственно нулевого и (k-1)-го измерений. Например, таким будет уравнение . (6.1)
Действительно при сделанном предположении относительно измерений
x, y, dx и dy члены левой части и dy будут иметь соответственно измерения -2, 2k и k-1. Приравнивая их, получаем условие, которому должно удовлетворять искомое число k: -2 = 2k = k-1. Это условие выполняется при k = -1 (при таком k все члены левой части рассматриваемого уравнения будут иметь измерение -2). Следовательно, уравнение (6.1) является обобщенным однородным.
Обобщенное однородное уравнение приводится к уравнению с разделяющимися переменными с помощью подстановки , где z - новая неизвестная функция. Проинтегрируем указанным методом уравнение (6.1). Так как k = -1, то , после чего получаем уравнение .
Интегрируя его, находим , откуда . Это общее решение уравнения (6.1).
§ 7. Линейные дифференциальные уравнения 1-го порядка
Линейным уравнением 1-го порядка называется уравнение, линейное относительно искомой функции и ее производной. Оно имеет вид:
, (7.1)
где P(x) и Q(x) - заданные непрерывные функции от x.
Если функция , то уравнение (7.1) имеет вид:
(7.2)
и называется линейным однородным уравнением, в противном случае оно называется линейным неоднородным уравнением.
Линейное однородное дифференциальное уравнение (7.2) является уравнением с разделяющимися переменными:
(7.3)
Выражение (7.3) есть общее решение уравнения (7.2). Чтобы найти общее решение уравнения (7.1), в котором функция P(x) обозначает ту же функцию, что и в уравнении (7.2), применим прием, называемый методом вариации произвольной постоянной и состоящий в следующем: постараемся подобрать функцию С=С(x) так, чтобы общее решение линейного однородного уравнения (7.2) являлось бы решением неоднородного линейного уравнения (7.1). Тогда для производной функции (7.3) получим:
.
Подставляя найденную производную в уравнение (7.1), будем иметь:
или .
Откуда , где - произвольная постоянная. В результате общее решение неоднородного линейного уравнения (7.1) будет (7.4)
Первое слагаемое в этой формуле представляет общее решение (7.3) линейного однородного дифференциального уравнения (7.2), а второе слагаемое формулы (7.4) есть частное решение линейного неоднородного уравнения (7.1), полученное из общего (7.4) при . Этот важный вывод выделим в виде теоремы.
Теорема. Если известно одно частное решение линейного неоднородного дифференциального уравнения , то все остальные решения имеют вид , где - общее решение соответствующего линейного однородного дифференциального уравнения.
Однако надо отметить, что для решения линейного неоднородного дифференциального уравнения 1-го порядка (7.1) чаще применяется другой метод, иногда называемый методом Бернулли. Будем искать решение уравнения (7.1) в виде . Тогда . Подставим найденную производную в исходное уравнение:
.
Объединим, например, второе и третье слагаемые последнего выражения и вынесем функцию u(x) за скобку:
(7.5)
Потребуем обращения в нуль круглой скобки: .
Решим это уравнение, полагая произвольную постоянную C равной нулю: . С найденной функцией v(x) вернемся в уравнение (7.5): .
Решая его, получим:
.
Следовательно, общее решение уравнения (7.1) имеет вид:
.
§ 8. Уравнение Бернулли
Определение
Дифференциальное уравнение вида , где , называется уравнением Бернулли.
Предполагая, что , разделим обе части уравнения Бернулли на . В результате получим: (8.1)
Введем новую функцию . Тогда . Домножим уравнение (8.1) на и перейдем в нем к функции z(x): , т.е. для функции z(x) получили линейное неоднородное уравнение 1-го порядка. Это уравнение решается методами, разобранными в предыдущем параграфе. Подставим в его общее решение вместо z(x) выражение , получим общий интеграл уравнения Бернулли, который легко разрешается относительно y. При добавляется решение y(x)=0. Уравнение Бернулли можно также решать, не делая перехода к линейному уравнению путем подстановки , а применяя метод Бернулли, подробно разобранный в § 7. Рассмотрим применение этого способа для решения уравнения Бернулли на конкретном примере.
Пример. Найти общее решение уравнения: (8.2)
Решение
Уравнение (8.2) является уравнением Бернулли, причем .
Будем искать решение уравнения в виде .
Тогда .
В левой части последнего уравнения сгруппируем второе и третье слагаемые, которые содержат функцию u(x), и потребуем, чтобы . Откуда . Тогда для функции u(x) будем иметь следующее уравнение:
или ,
которое является уравнением с разделяющимися переменными для функции u(x). Решим его ,
,
Следовательно, общее решение данного уравнения имеет вид: , y(x)=0.
§ 9. Дифференциальные уравнения в полных дифференциалах
Определение. Если в уравнении M(x,y)dx+N(x,y)dy=0 (9.1) левая часть есть полный дифференциал некоторой функции U(x,y), то оно называется уравнением в полных дифференциалах. Это уравнение можно переписать в виде du(x,y)=0, следовательно, его общий интеграл есть u(x,y)=c.
Например, уравнение xdy+ydx=0 есть уравнение в полных дифференциалах, так как его можно переписать в виде d(xy)=0. Общим интегралом будет xy=c.
Теорема. Предположим, что функции M и N определены и непрерывны в некоторой односвязной области D и имеют в ней непрерывные частные производные соответственно по y и по x. Тогда, для того, чтобы уравнение (9.1) было уравнением в полных дифференциалах, необходимо и достаточно, чтобы выполнялось тождество (9.2).
Доказательство
Доказательство необходимости этого условия очевидно. Поэтому докажем достаточность условия (9.2). Покажем, что может быть найдена такая функция u(x,y), что и .
Действительно, поскольку ,то
(9.3)
где - произвольная дифференцируемая функция. Продифференцируем (9.3) по y:
. Но ,
следовательно,
.
Положим и тогда .
Итак, построена функция , для которой , а .
Рассмотрим пример.
Пример. Найти общий интеграл уравнения: .
Решение. Здесь
Тогда . Следовательно, заданное дифференциальное уравнение 1-го порядка является уравнением в полных дифференциалах, т.е. существует такая функция u(x,y), частные производные которой соответственно по x и y равны M(x,y) и N(x,y):
. Интегрируем первое из двух соотношений по x:
, .
Теперь продифференцируем u(x,y) по y и приравняем полученное в результате выражение выписанной выше частной производной :
.
Откуда и . Следовательно, общим интегралом заданного уравнения является: .
§ 10. Интегрирующий множитель
Если уравнение M(x,y)dx + N(x,y)dy = 0 не является уравнением в полных дифференциалах и существует функция µ = µ(x,y), такая что после умножения на нее обеих частей уравнения получается уравнение
µ(Mdx + Ndy) = 0 в полных дифференциалах, т. е. µ(Mdx + Ndy)du, то функция µ(x,y) называется интегрирующим множителем уравнения. В случае, когда уравнение уже есть уравнение в полных дифференциалах, полагают µ = 1.
Если найден интегрирующий множитель µ, то интегрирование данного уравнения сводится к умножению обеих его частей на µ и нахождению общего интеграла полученного уравнения в полных дифференциалах.
Если µ есть непрерывно дифференцируемая функция от x и y, то
.
Отсюда следует, что интегрирующий множитель µ удовлетворяет следующему уравнению с частными производными 1-го порядка:
(10.1).
Если заранее известно, что µ= µ(щ), где щ - заданная функция от x и y, то уравнение (10.1) сводится к обыкновенному (и притом линейному) уравнению с неизвестной функцией µ от независимой переменной щ:
(10.2),
где , т. е. дробь является функцией только от щ.
Решая уравнение (10.2), находим интегрирующий множитель
, с = 1.
В частности уравнение M(x,y)dx + N(x,y)dy = 0 имеет интегрирующий множитель, зависящий только от x (щ = x) или только от y (щ = y), если выполнены соответственно следующие условия:
,
Или
, .
Размещено на Allbest
Подобные документы
Задачи Коши для дифференциальных уравнений. График решения дифференциального уравнения I порядка. Уравнения с разделяющимися переменными и приводящиеся к однородному. Однородные и неоднородные линейные уравнения первого порядка. Уравнение Бернулли.
лекция [520,6 K], добавлен 18.08.2012Основные понятия теории обыкновенных дифференциальных уравнений. Признак уравнения в полных дифференциалах, построение общего интеграла. Простейшие случаи нахождения интегрирующего множителя. Случай множителя, зависящего только от Х и только от Y.
курсовая работа [979,1 K], добавлен 24.12.2014Особенности дифференциальных уравнений как соотношения между функциями и их производными. Доказательство теоремы существования и единственности решения. Примеры и алгоритм решения уравнений в полных дифференциалах. Интегрирующий множитель в примерах.
курсовая работа [657,0 K], добавлен 11.02.2014Дифференциальные уравнения Риккати. Общее решение линейного уравнения. Нахождение всех возможных решений дифференциального уравнения Бернулли. Решение уравнений с разделяющимися переменными. Общее и особое решения дифференциального уравнения Клеро.
курсовая работа [347,1 K], добавлен 26.01.2015Уравнение с разделяющимися переменными. Однородные и линейные дифференциальные уравнения. Геометрические свойства интегральных кривых. Полный дифференциал функции двух переменных. Определение интеграла методами Бернулли и вариации произвольной постоянной.
реферат [111,0 K], добавлен 24.08.2015Понятия и решения простейших дифференциальных уравнений и дифференциальных уравнений произвольного порядка, в том числе с постоянными аналитическими коэффициентами. Системы линейных уравнений. Асимптотическое поведение решений некоторых линейных систем.
дипломная работа [395,4 K], добавлен 10.06.2010Общий интеграл уравнения, применение метода Лагранжа для решения неоднородного линейного уравнения с неизвестной функцией. Решение дифференциального уравнения в параметрической форме. Условие Эйлера, уравнение первого порядка в полных дифференциалах.
контрольная работа [94,3 K], добавлен 02.11.2011Установление прямой зависимости между величинами при изучении явлений природы. Свойства дифференциальных уравнений. Уравнения высших порядков, приводящиеся к квадратурам. Линейные однородные дифференциальные уравнения с постоянными коэффициентами.
курсовая работа [209,4 K], добавлен 04.01.2016Изучение понятия и методов решения обыкновенных дифференциальных уравнений. Искомые функции непрерывного аргумента и замена их функциями дискретного аргумента. Разностное уравнение относительно сеточной функции - аппроксимация на сетке. Метод Эйлера.
презентация [107,6 K], добавлен 18.04.2013Уравнения с разделяющимися переменными, методы решения. Практический пример нахождения частного и общего решения. Понятие о неполных дифференциальных уравнениях. Линейные уравнения первого порядка. Метод вариации постоянной, разделения переменных.
презентация [185,0 K], добавлен 17.09.2013