Анализ вариационных рядов

Показатели вариации. Расчет дисперсии по модифицированной формуле. Размах вариации, среднее линейное и среднее квадратичное отклонение. Вариация альтернативного признака. Виды дисперсий в совокупности, разделенной на части. Правило сложения дисперсий.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 09.12.2011
Размер файла 51,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Анализ вариационных рядов

1. Показатели вариации

Вариацией называется изменяемость, колеблемость величины признака. Вариация проявляется в отклонениях от средних и зависит от множества факторов, влияющих на социально-экономическое явление. Вариация бывает случайной и систематической, существует в пространстве и во времени. Показатели вариации делятся на абсолютные и относительные.

Показатели вариации

Показатель

Формула расчета показателя

простой

взвешенный

Абсолютные

Размах

(2.1)

Среднее линейное отклонение

(2.2)

* (2.3)

Дисперсия

у2 (2.4)

(2.5)

Среднеквадратическое отклонение

(2.6)

(2.7)

относительные

Коэффициент вариации

(2.8)

Линейный коэффициент вариации

(2.9)

Коэффициент осцилляции

(2.10)

* - Здесь fi - частота ().

Относительные показатели (коэффициент вариации, линейный коэффициент вариации, коэффициент осцилляции) строятся с учетом базы (в виде средней), выражаются в процентах и дают характеристику однородности совокупности. Совокупность считается однородной, если коэффициент вариации .

Для расчета дисперсии можно использовать модифицированную формулу:

.

Выведем эту формулу из формулы

Для расчета дисперсии можно использовать способ отсчета от условного нуля, который позволяет упростить вычисления при больших значениях признака. Тогда дисперсия вычисляется по формуле:

,

где h - величина интервала;

А - условный нуль, в качестве которого можно использовать как середину серединного интервала, так и середину интервала с наибольшей частотой.

Свойства дисперсии

Дисперсия постоянной величины равна нулю.

Если у всех значений вариантов отнять какое-то постоянное число А, то средний квадрат отклонений (дисперсия) от этого не изменится

.

Это значит, что дисперсию можно вычислить не по заданным значениям признака, а по их отклонениям от какого-то постоянного числа, например условного нуля.

Если все значения вариантов разделить на какое-то постоянное число А, то дисперсия уменьшится в А2 раз:

.

Если распределение признака близко к нормальному или симметричному, то по правилу мажорантности (т.к. среднеквадратическое отклонение - средняя геометрическая величина, а среднее линейное отклонение - средняя арифметическая) среднеквадратическое отклонение больше среднего линейного отклонения (), причем , .

Размах вариации, среднее линейное и среднее квадратичное отклонение - это именованные величины. Единицей измерения у них и у исходных значений признака совпадают. Дисперсия может быть задана в ед.2 признака или в % отклонений.

2. Вариация альтернативного признака

Альтернативные признаки - два противоположных, взаимоисключающих друг друга качественных признака, которыми одни единицы совокупности обладают (значение варианта 1), а другие не обладают (значение варианта 0) (например, пол - мужской и женский, население - городское и сельское, продукция - годная и бракованная).

Частостью (p) является доля единиц, обладающих данным признаком, в общей численности совокупности и (q = 1 - p) - доля единиц, не обладающих данным признаком, в общей численности совокупности.

xi

fi

1

p

0

q = 1 - p

Средняя арифметическая альтернативного признака

.

Дисперсия альтернативного признака

,

т.е. дисперсия альтернативного признака равна произведению доли единиц, обладающих данным признаком, и доли единиц, не обладающих этим признаком.

Исходя из того, что p + q = 1:

; .

дисперсия вариация модифицированный отклонение

3. Виды дисперсий в совокупности, разделенной на части. Правило сложения дисперсий

Если исходная совокупность является такой, что по значениям признака она делится на l групп, то общая дисперсия складывается из частных дисперсий. В таблице представлен анализ такой совокупности.

Определение исходной совокупности по группам

Значение признака х

Число единиц в j-й группе

Итого

1

j

l

х1

f11

f1j

f1l

хi

fi1

fij

fil

хk

fk1

fkj

fkl

Итого

Здесь j - номер группы ();

хi - i-е значение признака ();

fij - частота i-го значения признака, число единиц в j-й группе;

mi - сумма частот i-го значения признака в каждой группе;

nj - сумма частот всех значений признака в j-й группе;

N - сумма частот всех значений признака во всех группах (объем совокупности).

Сначала вычисляем l частных средних (), т.е. среднее значение признака в каждой группе:

.

На основе частных средних определяем общую среднюю () по формулам

или .

Общая дисперсия совокупности

.

Общая дисперсия отражает вариацию признака за счет всех факторов, действующих в данной совокупности.

Вариацию между группами за счет признака-фактора, положенного в основу группировки, отражает межгрупповая дисперсия, которая исчисляется как средний квадрат отклонений групповой средней от общей средней:

.

Межгрупповая дисперсия характеризует систематическую вариацию результативного признака, т.е. вариацию между группами за счет признака-фактора, положенного в основу группировки.

Вариацию внутри каждой группы изучаемой совокупности отражает внутригрупповая дисперсия, которая исчисляется как средний квадрат отклонений значений признака х от частной средней :

или .

Для всей совокупности внутригрупповую вариацию будет выражать средняя из внутригрупповых дисперсий, которая рассчитывается как средняя арифметическая из внутригрупповых дисперсий:

.

Внутригрупповая дисперсия отражает случайную вариацию, т.е. часть вариации обусловленную влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основу группировки.

Между представленными видами дисперсий существует определенное соотношение, которое известно как правило сложения дисперсий:

.

Таким образом, общая дисперсия складывается из двух слагаемых: первое - средняя из внутригрупповых дисперсий - измеряет вариацию внутри частей совокупности, второе - межгрупповая дисперсия - вариацию между средними этих частей.

Правило сложения дисперсий позволяет выявить зависимость результатов от определяющих факторов с помощью соотношения межгрупповой и общей дисперсий. Это соотношение называется эмпирическим коэффициентом детерминации2) и показывает долю вариации результативного признака под влиянием факторного.

.

Эмпирическое корреляционное отношение (з) показывает тесноту связи между исследуемым явлением и группировочным признаком.

.

з2 и з [0, 1].

Если связь отсутствует, то = 0. В этом случае межгрупповая дисперсия равна нулю (д2=0), т.е. все групповые средние равны между собой и межгрупповой вариации нет. Это означает, что группировочный признак не влияет на вариацию исследуемого признака х.

Если связь функциональная, то = 1. В этом случае дисперсия групповых средних равна общей дисперсии (). Это означает, что группировочный признак полностью определяет характер изменения изучаемого признака.

Чем больше значение корреляционного отношения приближается к единице, тем полнее (сильнее) корреляционная связь между признаками.

Качественная оценка связи между признаками (шкала Чэддока)

Значение

Характер связи

Значение

Характер связи

з = 0

Отсутствует

0,5 ? з < 0,7

Заметная

0 < з < 0,2

Очень слабая

0,7 ? з < 0,9

Сильная

0,2 ? з < 0,3

Слабая

0,9 ? з < 1

Весьма сильная

0,3 ? з < 0,5

Умеренная

з = 1

Функциональная

Размещено на Allbest.ru


Подобные документы

  • Среднее значение показателя (среднее арифметическое). Показатели вариации - размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, дисперсия, коэффициент вариации. Максимальное и минимальное значение статистического показателя.

    контрольная работа [159,7 K], добавлен 14.11.2008

  • Решение задач линейного программирования, построение графиков линий по точкам. Среднее время ожидания в очереди и исправленное среднее квадратичное отклонение для выборки. Корреляционный анализ связи между числом посетителей и выручкой магазина.

    контрольная работа [609,0 K], добавлен 13.11.2011

  • Вариация признаков в совокупности. Типы рядов распределения: атрибутивные и вариационные. Классификация по характеру вариации. Основные характеристики и графическое изображение вариационного ряда. Показатели центра распределения и колеблемости признака.

    курсовая работа [110,0 K], добавлен 23.07.2009

  • Операция объединения множеств. Перестановки без повторений, правило произведения. Вероятности извлечения предмета из урны. Вероятность наивероятнейшего числа попаданий в десятку. Математическое ожидание, дисперсия и среднее квадратичное отклонение.

    контрольная работа [165,5 K], добавлен 23.09.2011

  • Область определения функции. Точки пересечения графика функции с осями координат. Экстремумы, промежутки возрастания и убывания. Корни полученного квадратного уравнения. Среднее квадратическое отклонение. Коэффициент вариации, максимальное значение ряда.

    контрольная работа [91,0 K], добавлен 08.01.2011

  • Основные методы измерения деревьев. Наука о математических методах систематизации. Определение дисперсии случайной величины. Выборочное исправленное среднее квадратическое отклонение. Метод наименьших квадратов. Свойства параболической регрессии.

    курсовая работа [840,1 K], добавлен 15.06.2011

  • Классическое определение вероятности. Формулы сложения и умножения вероятностей. Дисперсия случайной величины. Число равновозможных событий . Матрица распределения вероятностей системы. Среднее квадратическое отклонение, доверительный интервал.

    контрольная работа [89,7 K], добавлен 07.09.2010

  • Построение интервальных вариационных рядов по показателям. Вычисление средней арифметической, моды и медианы, относительных и абсолютных показателей вариации. Определение количественных характеристик распределений, построение эмпирической функции.

    курсовая работа [179,8 K], добавлен 11.01.2012

  • Предмет, метод и история возникновения статистики. Построение таблиц, понятие абсолютных и относительных величин и правила действия с ними. Сущность вариации, свойства дисперсии и расчет индексов. Особенности корреляционно-регрессионного анализа.

    курс лекций [302,0 K], добавлен 14.07.2011

  • Построение и графическое изображение вариационных рядов. Дискретный вариационный ряд распределения урожайности зерновых, сельскохозяйственных предприятий по качеству почв. Показатели центра распределения. Показатели формы и колеблемости признака.

    лабораторная работа [208,0 K], добавлен 15.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.