Обслуживание с ожиданием

Процесс обслуживания как марковский случайный процесс. Методика составления уравнений. Вычисление стационарного решения. Некоторые подготовительные результаты. Определение функции распределения длительности ожидания. Средняя длительность ожидания.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 10.11.2011
Размер файла 92,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Введение

Во многих областях практической деятельности человека мы сталкиваемся с необходимостью пребывания в состоянии ожидания. Подобные ситуации возникают в очередях в билетных кассах, в крупных аэропортах, при ожидании обслуживающим персоналом самолетов разрешения на взлет или посадку, на телефонных станциях в ожидании освобождения линии абонента, в ремонтных цехах в ожидании ремонта станков и оборудования, на складах снабженческо-сбытовых организаций в ожидании разгрузки или погрузки транспортных средств. Во всех перечисленных случаях имеем дело с массовостью и обслуживанием. Изучением таких ситуаций занимается теория массового обслуживания.

В теории систем массового обслуживания (в дальнейшем просто - CMО) обслуживаемый объект называют требованием. В общем случае под требованием обычно понимают запрос на удовлетворение некоторой потребности, например, разговор с абонентом, посадка самолета, покупка билета, получение материалов на складе.

Средства, обслуживающие требования, называются обслуживающими устройствами или каналами обслуживания. Например, к ним относятся каналы телефонной связи, посадочные полосы, мастера-ремонтники, билетные кассиры, погрузочно-разгрузочные точки на базах и складах.

В теории СМО рассматриваются такие случаи, когда поступление требований происходит через случайные промежутки времени, а продолжительность обслуживания требований не является постоянной, т.е. носит случайный характер. В силу этих причин одним из основных методов математического описания СМО является аппарат теории случайных процессов.

Основной задачей теории СМО является изучение режима функционирования обслуживающей системы и исследование явлений, возникающих в процессе обслуживания. Так, одной из характеристик обслуживающей системы является время пребывания требования в очереди. Очевидно, что это время можно сократить за счет увеличения количества обслуживающих устройств. Однако каждое дополнительное устройство требует определенных материальных затрат, при этом увеличивается время бездействия обслуживающего устройства из-за отсутствия требований на обслуживание, что также является негативным явлением. Следовательно, в теории СМО возникают задачи оптимизации: каким образом достичь определенного уровня обслуживания (максимального сокращения очереди или потерь требований) при минимальных затратах, связанных с простоем обслуживающих устройств.

1. Постановка задачи

СМО с ожиданием распространены наиболее широко. Их можно разбить на 2 большие группы - разомкнутые и замкнутые. Эти системы определяют так же, как системы с ограниченным входящим потоком.

К замкнутым относятся системы, в которых поступающий поток требований ограничен. Например, мастер, задачей которого является наладка станков в цехе, должен периодически их обслуживать. Каждый налаженный станок становится в будущем потенциальным источником требований на подналадку.

В подобных системах общее число циркулирующих требований конечно и чаще всего постоянно.

Если питающий источник обладает бесконечным числом требований, то системы называются разомкнутыми. Примерами подобных систем могут служить магазины, кассы вокзалов, портов и др. Для этих систем поступающий поток требований можно считать неограниченным.

Мы рассмотрим здесь классическую задачу теории массового обслуживания в тех условиях, в каких она была рассмотрена и решена К. Эрлангом. на n одинаковых приборов поступает простейший поток требований интенсивности . Если в момент поступления имеется хотя бы один свободный прибор, оно немедленно начинает обслуживаться. Если же все приборы заняты, то вновь прибывшее требование становится в очередь за всеми теми требованиями, которые поступили раньше и ещё не начали обслуживаться. Освободившийся прибор немедленно приступает к обслуживанию очередного требования, если только имеется очередь. Каждое требование обслуживается только одним прибором, и каждый прибор обслуживает в каждый момент времени не более одного требования. Длительность обслуживания представляет собой случайную величину с одним и тем же распределением вероятностей F(x). Предполагается, что при x0.

где - постоянная.

Только что описанная задача представляет значительный прикладной интерес, и результаты, с которыми мы познакомимся, широко используются для практических целей. Реальных ситуаций, в которых возникают подобные вопросы, исключительно много. Эрланг решил эту задачу, имея в виду постановки вопросов, возникших к тому времени в телефонном деле.

Выбор распределения (1) для описания длительности обслуживания произведен не случайно. Дело в том, что в этом предположении задача допускает простое решение, которое с удовлетворительной для практики точностью описывает ход интересующего нас процесса. Распределение (1) играет в теории массового обслуживания исключительную роль, которая в значительной мере вызвана следующим его свойством:

При показательном распределении длительности обслуживания распределение длительности оставшейся части работы по обслуживанию не зависит от того, сколько оно уже продолжалось.

Действительно, пусть означает вероятность того, что обслуживание, которое ужо продолжается время а, продлится еще не менее чем . В предположении, что длительность обслуживания распределена показательно, . Далее ясно, что и . А так как всегда и , и, следовательно,

Требуемое доказано.

Несомненно, что в реальной обстановке показательное время обслуживания является, как правило, лишь грубым приближением к действительности. Так, нередко время обслуживания не может быть меньше, чем некоторая определенная величина. Предположение же (1) приводит к тому, что значительная доля требовании нуждается лишь в кратковременной операции, близкой к 0. Позднее перед нами возникает задача освобождения от излишнего ограничения, накладываемого предположением (1). Необходимость этого была ясна уже самому Эрлангу, и он в ряде работ делал усилия найти иные удачные распределения для длительности обслуживания. В частности, им было предложено так называемое распределение Эрланга, плотность распределения которого дается формулой

обслуживание марковский случайный уравнение

где >0, a k - целое положительное число.

Распределение Эрланга представляет собой распределение суммы k - независимых слагаемых, каждое из которых имеет распределение (1).

Обозначим для случая распределения (1) через время обслуживания требования. Тогда средняя длительность обслуживания равна

Это равенство даст нам cпособ оценки параметра по опытным данным. Как легко вычислить, дисперсия длительности обслуживания равна

Процесс обслуживания как марковский случайный процесс

В указанных нами предположениях о потоке требований и о длительности обслуживания задачи теории массового обслуживания приобретают некоторые черты, облегчающие проведение исследований. Мы отмечали уже вычислительную простоту. Теперь отметим более принципиальное соображение, которое станем развивать применительно к изучаемой задаче.

В каждый момент рассматриваемая система может находиться в одном из следующих состоянии: в момент t в системе находятся k требовании (k=0, 1, 2,…). Если krn, то в системе находятся и обслуживаются k требований, а m-k - приборов свободны. Если km, то m требований обслуживаются, а k-m находятся в очереди и ожидают обслуживания. Обозначим через состояние, когда в системе находятся k требований. Таким образом, система может находиться в состояниях Обозначим через - вероятность того, что система в момент t окажется в состоянии .

Сформулируем, в чем заключается особенность изучаемых нами задач в сделанных предположениях. Пусть в некоторый момент наша система находилась и состоянии . Докажем, что последующее течение процесса обслуживания не зависит в смысле теории вероятностей от того, что происходило до момента . Действительно, дальнейшее течение обслуживания полностью определяется тремя следующими факторами:

моментами окончания обслуживаний, производящихся в момент ;

моментами появления новых требований;

длительностью обслуживания требований, поступивших после .

В силу особенностей показательного распределения длительность остающейся части обслуживания не зависит от того, как долго уже продолжалось обслуживание до момента . Так как поток требований простейший, то прошлое не влияет на то, как много требований появится после момента . Наконец длительность обслуживания требований, появившихся после , никак не зависит от того, что и как обслуживалось до момента .

Известно, что случайные процессы, для которых будущее развитие зависит только от достигнутого в данный момент состояния и не зависит от того, как происходило развитие в прошлом, называются процессами Маркова или же процессами без последействия. Итак, система с ожиданием в случае простейшего потока и показательного времени обслуживания представляет собой случайный процесс Маркова. Это обстоятельство облегчает дальнейшие рассуждении.

Составление уравнений

Задача теперь состоит в том, чтобы найти те уравнения, которым удовлетворяют вероятности . Одно из уравнения очевидно, a именно для каждого t

(2)

Найдём сначала вероятность того, что и момент t.+h все приборы свободны. Это может произойти следующими способами:

в момент t все приборы были свободны и за время h новых требований не поступало;

в момент t один прибор был занят обслуживанием требования, все остальные приборы свободны; за время h обслуживание требования было завершено и новых требований не поступило.

Остальные возможности, как-то: были заняты два или три прибора и за время h работа на них біла закончена - имеют вероятность о(h), как легко в этом убедится.

Вероятность первого из указанных событий равна

,

вероятность второго события

.

Таким образом

.

Отсюда очевидным образом приходим уравнению

Перейдём теперь к составлению уравнений для при 1. Рассмотрим отдельно два различных случая: 1 и . Пусть в начале 1. Перечислим только существенные состояния, из которых можно прийти в состояние в момент t+h. Эти состояния таковы:

В момент t система находилась в состоянии , за время h новых требований не поступило и ни один прибор не окончил обслуживания. Вероятность этого события равна:

В момент t система находилась в состоянии , за время h поступило новое требование, но ни одно ранее находившееся требование не было закончено обслуживанием. Вероятность этого события равна

В момент t система находилась в состоянии , за время h новых требований не поступило, но одно требование было обслужено. Вероятность этого равна

Все остальные мыслимые возможности перехода в состояние за промежуток времени h имеют вероятность, равную о(h).

Собрав воедино найденные вероятности, получаем следующее равенство:

Несложные преобразования приводят от этого равенства к такому уравнению для 1;

(4)

Подобные же рассуждения для приводят к уравнению

(5)

Для определения вероятностей получили бесконечную систему дифференциальных уравнений (2) - (5). Её решение представляет несомненные технические трудности.

Определение стационарного решения

В теории массового обслуживания обычно изучают лишь установившееся решение для . Существование таких решений устанавливается так называемыми эргодическими теоремами, некоторые из них позднее будут установлены. В рассматриваемой задаче оказывается, что предельные или, как говорят обычно, стационарные вероятности существуют. Введём для них обозначения . Заметим дополнительно, что при .

Сказанное позволяет заключить, что уравнения (3), (4), (5) для стационарных вероятностей принимают следующий вид:

(6)

при 1

(7)

при

(8)

К этим уравнениям добавляется нормирующее условие

(9)

Для решения полученной бесконечной алгебраической системы введём обозначения: при 1

при

Система уравнений (6) - (8) в этих обозначениях принимает такой вид:

при

Отсюда заключаем, что при всех

т.е. при 1

(10)

и при

(11)

Введём для удобства записи обозначение

.

Уравнение (10) позволяет заключить, что при 1

(12)

При из (11) находим, что

и, следовательно, при

(13)

Остаётся найти . Для этого в (9) подставляем выражения из (12) и (13). В результате

так как бесконечная сумма, стоящая в квадратных скобках, сходится только при условии, что

(14)

то при этом предположении находим равенство

(15)

Если условие (14) не выполнено, т.е. если , то ряд, стоящий в квадратной скобке уравнения для определения , расходится и, значит, должно быть равно 0. Но при этом, как следует из (12) и (13), при всех оказывается .

Методы теории цепей Маркова позволяют заключить, что при с течением времени очередь стремится к по вероятности.

Поясним полученный результат на нескольких практических примерах, которые покажут, что обычные в практической деятельности подсчеты, основанные на чисто арифметических соображениях, при которых не учитывается специфика случайных колебаний в поступлении требований на обслуживание, приводят к серьезным просчетам.

Пусть врач успевает удовлетворительно осмотреть больного и заполнить его историю болезни в среднем за 15 минут. Планирующие органы из этого обычно делают вывод: за четырёхчасовый рабочий день врач должен принимать 16 человек. Однако больные приходят в случайные моменты времени. В результате при таком подсчете пропускной способности врача к нему неизбежно скапливается очередь, так как при проведенном подсчете принимается равным 1. Те же заключения относятся и к расчету числа коек в больницах, числа работающих касс в магазинах, числа официантов в ресторанах и т.д. К сожалению, некоторые экономисты совершают такую же ошибку и при расчете погрузочных средств в карьерах, числе приемщиков на элеваторах, числе причалов в морских портах и пр.

Во всем дальнейшем мы предполагаем, что условие (14) выполнено.

Некоторые подготовительные результаты

Для задачи с ожиданием основной характеристикой качества обслуживания является длительность ожидания требованием начала обслуживания. Длительность ожидания представляет собой случайную величину, которую обозначим буквой . Рассмотрим сейчас только задачу определения распределения вероятностей длительности ожидания в уже установившемся процессе обслуживания. Обозначим далее через вероятность того, что длительность ожидания превзойдёт t, и через вероятность неравенства, указанного в скобке при условии, что в момент поступления требования, для которого подсчитывается длительность ожидания, в очереди уже находится k требований. В силу формулы полной вероятности имеем равенство

(16)

Прежде чем преобразовать эту формулу к виду, удобному для использования, приготовим некоторые необходимые для дальнейшего сведения. Прежде всего для случаев m=1 и m=2 найдем простые формулы для . Несложные преобразования приводят к таким равенствам: при m=1

=1-, (17)

а при m=2

(18)

Вычислим теперь вероятность того, что все приборы будут заняты в какой-то наудачу взятый момент. Очевидно, что эта вероятность равна

(19)

Эта формула для m=1 принимает особенно простой вид:

(20)

при m=2

(21)

В формуле (19) может принимать любое значение от 0 до m (исключительно). Так что в формуле (20) < 1, а в (21) <2.

Определение функции распределения длительности ожидания

Если в момент поступления требования в очереди уже находились k-m требований, то, поскольку обслуживание происходит в порядке очередности, вновь поступившее требование должно ожидать, когда будут обслужены k-m+1 требований. Пусть означает вероятность того, что за промежуток времени длительности t после поступления интересующего требования закончилось обслуживание ровно s требований. Ясно, что при имеет место равенство

Так как распределение длительности обслуживания предположено показательным и не зависящим ни от того, сколько требований находится в очереди, ни от того, как велики длительности обслуживания других требований, то вероятность за время t не завершить ни одного обслуживания (т.е. вероятность того, что не освободится ни один из приборов) равна

Если все приборы заняты обслуживанием и ещё имеется достаточная очередь требований, которые ожидают обслуживания, то поток обслуженных требований будет простейшим. Действительно, в этом случае все три условия - стационарность, отсутствие последействия и ординарность - выполнены. Вероятность освобождения за промежуток времени t ровно s приборов равна (это можно показать и простым подсчетом)

Итак,

и, следовательно,

Но вероятности известны:

поэтому

Очевидными преобразованиями приводим правую часть последнего равенства к виду

=

.

Из формул (18) и (19) следует, что поэтому при m0

(22)

Само собой разумеется, что при t0

Функция имеет в точке t=1 разрыв непрерывности, равный вероятности застать все приборы занятыми.

Средняя длительность ожидания

Формула (22) позволяет находить все интересующие числовые характеристики длительности ожидания. В частности, математическое ожидание длительности ожидания начала обслуживания или, как предпочитают говорить, средняя длительность ожидания равна

Несложные вычисления приводят к формуле

(23)

Дисперсия величины равна

Формула (23) даёт среднюю длительность ожидания одного требования. Найдем среднюю потерю времени требованиями, пришедшими в систему обслуживания в течение промежутка времени T. За время T в систему поступает требований и среднем; общая потеря ими времени па ожидание в среднем равна

(24)

Приведем небольшие арифметические подсчеты, которые продемонстрируют нам, как быстро возрастают суммарные потери времени па ожидание с изменением величины . При этом мы ограничиваемся случаем Т=1 и рассматриваем лишь самые малые значения т: т=1 и т=2.

При т=1 в силу (20)

При р=0,1; 0,3; 0,5; 0,9 значение а приблизительно равно 0,011; 0,267; 0,500; 1,633; 8,100.

При m=2 в силу (24)

При =0,1; 1,0; 1,5; 1,9 значение а приблизительно равно 00003; 0,333; 1,350; 17,537.

Приведённые данные иллюстрируют хорошо известный факт относительно большой чувствительности систем обслуживания, уже достаточно сильно загруженных, к возрастанию загрузки. Потребитель при этом сразу ощущает значительное возрастание длительности ожидания. Этот факт обязательно следует учитывать при расчёте загрузки оборудования в системах массового обслуживания.

Список литературы

1. Баканов, М.И., Теория экономического анализа/ М.И. Баканов, А.Д. Шеремет-М.: Финансы и статистика, 2005.

2. Басовский, Л.Е., Теория экономического анализа/Л.Е. Басовский - М.: Инфра-М, 2007.

3. Гиляровская, Л.Т., Экономический анализ/ Л.Т. Гиляровская - М.: ЮНИТИ-ДАНА, 2004.

Размещено на Allbest.ru


Подобные документы

  • Понятие системы массового обслуживания, ее сущность и особенности. Теория массового обслуживания как один из разделов теории вероятностей, рассматриваемые вопросы. Понятие и характеристика случайного процесса, его виды и модели. Обслуживание с ожиданием.

    курсовая работа [1,4 M], добавлен 15.02.2009

  • Основные понятия теории массового обслуживания: марковский процесс, простой поток, сеть Джексона. Исследование стационарного распределения сети с ромбовидным контуром: для марковских и немарковских процессов, а также для сети с отрицательными заявками.

    дипломная работа [957,4 K], добавлен 17.12.2012

  • Вычисление общего решения дифференциальных уравнений первого порядка с разделяющимися переменными. Расчет определенного интеграла с точностью до 0,001. Определение вероятности заданных событий, математического ожидания и дисперсии случайной величины.

    контрольная работа [543,4 K], добавлен 21.10.2012

  • Однородный Марковский процесс. Построение графа состояний системы. Вероятность выхода из строя и восстановления элемента. Система дифференциальных уравнений Колмогорова. Обратное преобразование Лапласа. Определение среднего времени жизни системы.

    контрольная работа [71,2 K], добавлен 08.09.2010

  • Определение вероятности для двух несовместных и достоверного событий. Закон распределения случайной величины; построение графика функции распределения. Нахождение математического ожидания, дисперсии, среднего квадратичного отклонения случайной величины.

    контрольная работа [97,1 K], добавлен 26.02.2012

  • Определение вероятностей различных событий по формуле Бернулли. Составление закона распределения дискретной случайной величины, вычисление математического ожидания, дисперсии и среднеквадратического отклонения случайной величины, плотностей вероятности.

    контрольная работа [344,8 K], добавлен 31.10.2013

  • Вычисление математического ожидания, дисперсии, функции распределения и среднеквадратического отклонения случайной величины. Закон распределения случайной величины. Классическое определение вероятности события. Нахождение плотности распределения.

    контрольная работа [38,5 K], добавлен 25.03.2015

  • Определение математического ожидания и дисперсии параметров распределения Гаусса. Расчет функции распределения случайной величины Х, замена переменной. Значения функций Лапласа и Пуассона, их графики. Правило трех сигм, пример решения данной задачи.

    презентация [131,8 K], добавлен 01.11.2013

  • Определение вероятности случайного события; вероятности выиграшных лотерейных билетов; пересечения двух независимых событий; непоражения цели при одном выстреле. Расчет математического ожидания, дисперсии, функции распределения случайной величины.

    контрольная работа [480,0 K], добавлен 29.06.2010

  • Случайный процесс в теории вероятностей. Математическое ожидание и дисперсия. Многомерные законы распределения. Вероятностные характеристики "входной" и "выходной" функций. Сечение случайной функции. Совокупность случайных величин, зависящих от параметра.

    курсовая работа [1,8 M], добавлен 23.12.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.