Параллелепипед, призма и пирамида

Параллелепипед - призма, основаниями которой служат параллелограммы. Основные свойства прямого и прямоугольного параллелепипедов. Объем куба. Призма, ее основания, боковые поверхности, вершины и боковые ребра. Площадь боковой поверхности пирамиды.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 21.10.2011
Размер файла 211,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Параллелепипед

Параллелепипедом называется призма, основаниями которой служат параллелограммы. Все шесть граней параллелепипеда (рис. 1) - параллелограммы. Отрезки, соединяющие вершины параллелепипеда, не принадлежащие одной и той же грани, называются диагоналями параллелепипеда.

Свойства параллелепипеда: 1) Середина диагонали параллелепипеда является его центром симметрии. 2) Противолежащие грани параллелепипеда попарно равны и параллельны. 3) Все четыре диагонали параллелепипеда пересекаются в одной точке и делятся ею пополам.

Параллелепипед, боковые ребра которого перпендикулярны плоскости основания параллелепипеда, называется прямым параллелепипедом (на рис. 2 ABCDA1B1C1D1 - прямой параллелепипед). Прямой параллелепипед, основанием которого служит прямоугольник, называется прямоугольным параллелепипедом. Все грани прямоугольного параллелепипеда - прямоугольники. Длины трех ребер прямоугольного параллелепипеда, выходящих из одной вершины, называются измерениями прямоугольного параллелепипеда.

Свойства прямоугольного параллелепипеда: 1) Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений:

2) Все диагонали прямоугольного параллелепипеда равны. Так как параллелепипед есть частный случай призмы, то площадь поверхности и объем параллелепипеда вычисляются по формулам для площади поверхности и объема призмы. Кроме того, объем прямоугольного параллелепипед можно вычислять по формуле

V=abc,

где a,b,c - три измерения прямоугольного параллелепипеда.

Куб. Прямоугольный параллелепипед с равными измерениями называется кубом. Все грани куба - равные квадраты. Объем куба вычисляется по формуле

,

где a - измерение куба.

Призма

Многогранник, две грани которого - равные n-угольники, лежащие в параллельных плоскостях, а остальные n граней - параллелограммы, называется n-угольной призмой. Пару равных n-угольников называют основаниями призмы. Остальные грани призмы называют ее боковыми гранями, а их объединение - боковой поверхностью призмы. На рис. 1 изображена пятиугольная призма.

Стороны граней призмы называют ребрами, а концы ребер - вершинами призмы. Ребра, не принадлежащие основанию призмы, называют боковыми ребрами. Призму, боковые ребра которой перпендикулярны плоскостям оснований, называют прямой призмой. В противном случае призма называется наклонной. Отрезок перпендикуляра к плоскостям оснований призмы, концы которого принадлежат этим плоскостям, называют высотой призмы. Прямая призма, основанием которой является правильный многоугольник, называется правильной призмой.

Площадь боковой поверхности призмы. Пусть дана произвольная призма (на рис. 2 пятиугольная призма). Через точку А, принадлежащую одному из ее боковых ребер, проведем плоскость б, перпендикулярную этому ребру (и, следовательно, перпендикулярную всем остальным боковым ребрам). Если плоскость б пересекает все боковые ребра призмы, то многоугольник, полученный в результате сечения всех боковых граней плоскостью б (на рис. 2 пятиугольник ABCDE), называется перпендикулярным сечением призмы (если такого многоугольника не существует, то за перпендикулярное сечение призмы принимают многоугольник с вершинами в точках пересечения плоскости б с продолжениями боковых ребер). Площадь боковой поверхности призмы вычисляется по формуле

,

пирамида параллелепипед параллелограмм пирамида

где  - периметр перпендикулярного сечения призмы, - длина бокового ребра.

Пирамида

Многогранник, одна из граней которого - произвольный многогранник, а остальные грани - треугольники, имеющие одну общую вершину, называется пирамидой. Многоугольник называется основанием пирамиды, а остальные грани (треугольники) называютсябоковыми гранями пирамиды.

Различают треугольные, четырехугольные, пятиугольные и т. д. пирамиды в зависимости от вида многоугольника, лежащего в основании пирамиды.

Треугольную пирамиду также называют тетраэдром. На рис. 1 изображена четырехугольная пирамида SABCD с основанием ABCD и боковыми гранями SAB, SBC, SCD, SAD.

Стороны граней пирамиды называются ребрами пирамиды. Ребра, принадлежащие основанию пирамиды, называют ребрами основания, а все остальные ребра - боковыми ребрами. Общая вершина всех треугольников (боковых граней) называется вершиной пирамиды (на рис. 1 точка S - вершина пирамиды, отрезки SA, SB, SC, SD - боковые ребра, отрезки АВ, ВС, CD, AD - ребра основания).

Высотой пирамиды называется отрезок перпендикуляра, проведенного из вершины пирамиды S к плоскости основания (концами этого отрезка являются вершина пирамиды и основание перпендикуляра). На рис. 1 SO - высота пирамиды. Правильная пирамида. Пирамида называется правильной, если основанием пирамиды является правильный многоугольник, а ортогональная проекция вершины на плоскость основания совпадает с центром многоугольника, лежащего в основании пирамиды. Все боковые ребра правильной пирамиды равны между собой; все боковые грани - равные равнобедренные треугольники. Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется апофемой этой пирамиды. На рис. 2 SN - апофема. Все апофемы правильной пирамиды равны между собой. Площадь боковой поверхности пирамиды равна сумме площадей треугольников боковых граней, а площадь полной поверхности равна сумме площади боковой поверхности и площади основания. Площадь боковой поверхности правильной пирамиды вычисляется по формуле 

,

где P - периметр основания пирамиды, h - апофема. Объем пирамиды вычисляется по формуле

,

где Sосн - площадь основания пирамиды, h - высота пирамиды.

Размещено на Allbest.ru


Подобные документы

  • Краткий обзор развития геометрии. Призма. Площадь поверхности призмы. Призма и пирамида. Пирамида и площадь ее поверхности. Измерение объемов. О пирамиде и ее объеме. О призме и параллелепипеде. Симметрия в пространстве.

    реферат [19,7 K], добавлен 08.05.2003

  • Изучение понятия и видов призм. Основные параметры прямой призмы, у которой все основания являются правильными многоугольниками. Понятие и свойства параллелепипеда – призмы, основанием которого является параллелограмм. Соотношения между элементами призмы.

    реферат [310,7 K], добавлен 09.11.2010

  • Понятие многогранной поверхности, виды многоугольников. Грани, стороны и вершины многогранников. Свойства пирамиды, призмы и параллелепипеда. Объем многогранника, его измерение с помощью выбранной единицы измерения объемов. Основные свойства объемов.

    реферат [73,5 K], добавлен 08.05.2011

  • Основные свойства, прямой и наклонный виды призмы. Площадь поверхности призмы и площадь ее боковой поверхности: доказательство теоремы. Сечение призмы плоскостью. Свойства правильной призмы, особенности ее сечения и симметрия. Оси и плоскости симметрии.

    презентация [147,7 K], добавлен 20.12.2010

  • Понятие многогранника и его элементы с точки зрения топологии. Определение площади и боковой поверхности призмы, параллелепипеда, пирамиды. Понятие правильных, полуправильных, звездчатых многогранников. Многогранники в разных областях культуры и науки.

    курсовая работа [4,6 M], добавлен 02.04.2012

  • Обзор понятия геометрической фигуры призмы, ее основания и боковых граней. Построение отрезков, нахождение высоты прямой и наклонной призмы. Расчет полной и боковой площадей поверхности фигуры. Изучение теоремы о площади боковой поверхности прямой призмы.

    презентация [82,8 K], добавлен 17.05.2012

  • Определение призмы как геометрической фигуры. Свойства призмы, нормальное сечение. Правильная призма – призма, в основании которой лежит правильный многоугольник, а боковые рёбра перпендикулярны основаниям. Диагональное сечение. Элементы призм и ее виды.

    презентация [135,0 K], добавлен 19.09.2011

  • Отрезки, соединяющие вершину пирамиды с вершинами основания. Поверхность пирамиды, основание и боковые грани. Определение высоты пирамиды. Произвольные, усеченные и правильные пирамиды. Нахождение боковой поверхности правильной пирамиды и ее объема.

    презентация [726,6 K], добавлен 08.06.2011

  • Понятие призмы в геометрии. Прямые и наклонные призмы, характеристика их оснований, боковых ребер и граней. Площадь боковой поверхности, теорема, ее доказательство и следствие. Сечение призмы плоскостью. Особенности сечения и симметрии правильной призмы.

    презентация [219,5 K], добавлен 08.03.2012

  • Понятие и определение пирамиды. Отрезки, соединяющие вершину пирамиды с вершинами основания. Площадь боковой поверхности, основания и полной поверхности пирамиды. Свойства произвольных, усеченных и правильных пирамид. Определение высоты боковой грани.

    презентация [726,8 K], добавлен 05.04.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.