Греческие ученые

Демокрит - древнегреческий философ-материалист, один из первых представителей атомизма. Учение создателя религиозно-философской школы Пифагора Самосского. Биография и этические взгляды Аристотеля, разработка принципов бытия. Основы арифметики Диофанта.

Рубрика Математика
Вид курсовая работа
Язык русский
Дата добавления 13.10.2011
Размер файла 2,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В Палатинской антологии содержится эпиграмма-задача, из которой можно сделать вывод, что Диофант прожил 84 года:

Прах Диофанта гробница покоит; дивись ей и камень Мудрым искусством его скажет усопшего век. Волей богов шестую часть жизни он прожил ребенком. И половину шестой встретил с пушком на щеках. Только минула седьмая, с подругой он обручился. С нею, пять лет проведя, сына дождался мудрец; Только полжизни отцовской возлюбленный сын его прожил. Отнят он был у отца ранней могилой своей. Дважды два года родитель оплакивал тяжкое горе, Тут и увидел предел жизни печальной своей.

В честь Диофанта назван кратер на Луне.

Арифметика Диофанта

Основное произведение Диофанта -- Арифметика в 13 книгах. К сожалению, сохранились только 6 первых книг из 13.

философ атомизм бытие арифметика

Лист из Арифметики (рукопись XIV века). В верхней строке записано уравнение: .

Первая книга предварена обширным введением, в котором описаны используемые Диофантом обозначения. Неизвестную Диофант называет "числом" (?сйимьт) и обозначает буквой т, квадрат неизвестной -- символом дн (сокращение от дэнбмйт -- "степень"). Предусмотрены специальные знаки для следующих степеней неизвестного, вплоть до шестой, называемой кубо-кубом, и для противоположных им степеней. Знака сложения у Диофанта нет: он просто пишет рядом положительные члены, причём в каждом члене сначала записывается степень неизвестного, а затем численный коэффициент. Вычитаемые члены также записываются рядом, а перед всей их группой ставится специальный знак в виде перевёрнутой буквы Ш. Знак равенства обозначается двумя буквами ?у (сокращение от ?упт -- "равный"). Сформулированы правило приведения подобных членов и правило прибавления или вычитания к обеим частям уравнения одного и того же числа или выражения: то, что потом у ал-Хорезми стало называться "алгеброй и алмукабалой". Введено правило знаков: минус на минус даёт плюс; это правило используется при перемножении двух выражений с вычитаемыми членами. Всё это формулируется в общем виде, без отсылки к геометрическим истолкованиям.

Бомльшая часть труда -- это сборник задач с решениями (в сохранившихся шести книгах их всего 189), умело подобранных для иллюстрации общих методов. Главная проблематика Арифметики -- нахождение положительных рациональных решение определённых уравнений. Рациональные числа трактуются Диофантом так же, как и натуральные, что не типично для античных математиков.

Сначала Диофант исследует системы уравнений 2-го порядка от 2 неизвестных; он указывает метод нахождения других решений, если одно уже известно. Затем аналогичные методы он применяет к уравнениям высших степеней.

В X веке Арифметика была переведена на арабский язык, после чего математики стран ислама (Абу Камил и др.) продолжили некоторые исследования Диофанта. В Европе интерес к Арифметике возрос после того, как Рафаэль Бомбелли обнаружил это сочинение в Ватиканской библиотеке и опубликовал 143 задачи из него в своей Алгебре (1572). В 1621 году появился классический, подробно прокомментированный латинский перевод Арифметики, выполненный Баше де Мезириаком. Методы Диофанта оказали огромное влияние на Франсуа Виета и Пьера Ферма; впрочем, в Новое время неопределённые уравнения обычно решаются в целых числах, а не в рациональных, как это делал Диофант.

В XX веке под именем Диофанта обнаружен арабский текст еще 4 книг Арифметики. И. Г. Башмакова и Е. И. Славутин, проанализировав этот текст, выдвинули гипотезу, что их автором был не Диофант, а хорошо разбиравшийся в методах Диофанта комментатор, вероятнее всего -- Гипатия.

Другие сочинения Диофанта

Трактат Диофанта О многоугольных числах (Рес? рплхгюнщн ?сйим?н) сохранился не полностью; в сохранившейся части методами геометрической алгебры выводится ряд вспомогательных теорем.

Из сочинений Диофанта Об измерении поверхностей (?рйредпмефсйкЬ) и Об умножении (Рес? рпллбрлбуйбумп?) также сохранились лишь отрывки.

Книга Диофанта Поризмы известна только по нескольким теоремам, используемым в Арифметике.

Архимед

Архимед

БсчймЮдзт

"Архимед" (Доменико Фетти, 1620)

Дата рождения:

287 год до н. э.

Место рождения:

Сиракузы

Дата смерти:

212 год до н. э.

Место смерти:

Сиракузы

Научная сфера:

Математика, механика,инженерия

Архимемд (?счймЮдзт; 287 до н. э. -- 212 до н. э.) -- древнегреческий математик, физик,механик и инженер из Сиракуз. Сделал множество открытий в геометрии. Заложил основымеханики, гидростатики, автор ряда важных изобретений.

Биография

Сведения о жизни Архимеда оставили нам Полибий, Тит Ливий, Цицерон, Плутарх,Витрувий и другие. Они жили на много лет позже описываемых событий, и достоверность этих сведений оценить трудно.

Архимед родился в Сиракузах, греческой колонии на острове Сицилия. Отцом Архимеда был математик и астроном Фидий, состоявший, как утверждает Плутарх, в близком родстве с Гиероном, тираном Сиракуз. Отец привил сыну с детства любовь кматематике, механике и астрономии. Для обучения Архимед отправился в Александрию Египетскую -- научный и культурный центр того времени.

Александрия

В Александрии Архимед познакомился и подружился со знаменитыми учёными: астрономом Кононом, разносторонним учёнымЭратосфеном, с которыми потом переписывался до конца жизни. В то время Александрия славилась своей библиотекой, в которой было собрано более 700 тыс. рукописей.

По-видимому, именно здесь Архимед познакомился с трудами Демокрита, Евдокса и других замечательных греческих геометров, о которых он упоминал и в своих сочинениях.

По окончании обучения Архимед вернулся в Сицилию. В Сиракузах он был окружён вниманием и не нуждался в средствах. Из-за давности лет жизнь Архимеда тесно переплелась с легендами о нём.

Легенды

Архимед переворачивает планету Земля.

Уже при жизни Архимеда вокруг его имени создавались легенды, поводом для которых служили его поразительные изобретения, производившие ошеломляющее действие на современников. Известен рассказ о том, как Архимед сумел определить, сделана ли корона царя Гиерона из чистого золота или ювелир подмешал туда значительное количество серебра. Удельный вес золота был известен, но трудность состояла в том, чтобы точно определить объём короны: ведь она имела неправильную форму! Архимед всё время размышлял над этой задачей. Как-то он принимал ванну, и тут ему пришла в голову блестящая идея: погружая корону в воду, можно определить её объём, измерив объём вытесненной ею воды. Согласно легенде[1], Архимед выскочил голый на улицу с криком "Эврика!" (еэсзкб), то есть "Нашёл!". В этот момент был открыт основной закон гидростатики: закон Архимеда.

Другая легенда рассказывает, что построенный Гиероном в подарок египетскому царю Птолемею тяжёлый многопалубный корабль "Сиракузия" никак не удавалось спустить на воду. Архимед соорудил системублоков (полиспаст), с помощью которой он смог проделать эту работу одним движением руки. По легенде, Архимед заявил при этом: "Будь в моём распоряжении другая Земля, на которую можно было бы встать, я сдвинул бы с места нашу" (в другом варианте: "Дайте мне точку опоры, и я сдвину Землю").

Осада Сиракуз

Инженерный гений Архимеда с особой силой проявился во время осады Сиракуз римлянами в 212 году до н. э. в ходе Второй Пунической войны.[2] А ведь в это время ему было уже 75 лет! Построенные Архимедом мощные метательные машины забрасывали римские войска тяжёлыми камнями. Думая, что они будут в безопасности у самых стен города, римляне кинулись туда, но в это время лёгкие метательные машины близкого действия забросали их градом ядер. Мощные краны захватывали железными крюками корабли, приподнимали их кверху, а затем бросали вниз, так что корабли переворачивались и тонули. В последние годы[3] были проведены несколько экспериментов с целью проверить правдивость описания этого "сверхоружия древности". Построенная конструкция показала свою полную работоспособность.

Римляне вынуждены были отказаться от мысли взять город штурмом и перешли к осаде. Знаменитый историк древности Полибийписал: "Такова чудесная сила одного человека, одного дарования, умело направленного на какое-либо дело… римляне могли бы быстро овладеть городом, если бы кто-либо изъял из среды сиракузян одного старца". Но даже во время осады Архимед не давал покоя римлянам. По легенде, во время осады римский флот был сожжён защитниками города, которые при помощи зеркал и отполированных до блеска щитов сфокусировали на них солнечные лучи по приказу Архимеда.

Легенда была дважды опровергнута в телепередаче "Разрушители легенд" (в 46-м и 16-м выпусках). Существует мнение, что корабли поджигались метко брошенными зажигательными снарядами, а сфокусированные лучи служили лишь прицельной меткой для баллист. Однако в эксперименте греческого учёного Иоанниса Саккаса (1973) удалось поджечь фанерную модель римского корабля с расстояния 50 м, используя 70 медных зеркал.[4]

Только вследствие измены Сиракузы были взяты римлянами осенью 212 году до н. э. При этом Архимед был убит.

Смерть Архимеда

Эдуар Вимон (1846--1930). Смерть Архимеда

Рассказ о смерти Архимеда от рук римлян существует в нескольких версиях[5]:

1. Рассказ Иоанна Цеца (Chiliad, книга II): в разгар боя 75-летний Архимед сидел на пороге своего дома, углублённо размышляя над чертежами, сделанными им прямо на дорожном песке. В это время пробегавший мимо римский воин наступил на чертёж, и возмущённый учёный бросился на римлянина с криком: "Не тронь моих чертежей!" Солдат остановился и хладнокровно зарубил старика мечом.

2. Рассказ Плутарха: "К Архимеду подошёл солдат и объявил, что его зовёт Марцелл. Но Архимед настойчиво просил его подождать одну минуту, чтобы задача, которой он занимался, не осталась нерешённой. Солдат, которому не было дела до его доказательства, рассердился и пронзил его своим мечом".

3. Воин ворвался в дом Архимеда для грабежа, занёс меч на хозяина, а тот только и успел крикнуть: "Остановись, подожди хотя бы немного. Я хочу закончить решение задачи, а потом делай что хочешь!"

4. Архимед сам отправился к Марцеллу, чтобы отнести ему свои приборы для измерения величины Солнца. По дороге его ноша привлекла внимание римских солдат. Они решили, что учёный несёт в ларце золото или драгоценности, и, недолго думая, перерезали ему горло.

Предполагаемая гробница Архимеда в Сиракузах

Плутарх утверждает, что генерал Марцелл был разгневан гибелью Архимеда, которого он якобы приказал не трогать.

Таковы легенды. Однако многие историки полагают, что Архимед был убит не случайно -- ведь его ум стоил в те времена целой армии.

Цицерон, бывший квестором на Сицилии в 75 году до н. э., пишет в "Тускуланских беседах" (книга V)[6], что ему в 75 году до н. э., спустя 137 лет после этих событий, удалось обнаружить полуразрушенную могилу Архимеда; на ней, как и завещал Архимед, было изображение шара, вписанного в цилиндр.

Научная деятельность

Математика

Средневековый портрет Архимеда

По словам Плутарха, Архимед был просто одержим математикой. Он забывал о пище, совершенно не заботился о себе.

Работы Архимеда относились почти ко всем областям математики того времени: ему принадлежат замечательные исследования по геометрии, арифметике, алгебре. Так, он нашёл все полуправильные многогранники, которые теперь носят его имя, значительно развил учение о конических сечениях, дал геометрический способ решения кубических уравнений вида , корни которых он находил с помощью пересечения параболы и гиперболы. Архимед провёл и полное исследование этих уравнений, то есть нашёл, при каких условиях они будут иметь действительные положительные различные корни и при каких корни будут совпадать.

Однако главные математические достижения Архимеда касаются проблем, которые сейчас относят к области математического анализа. Греки до Архимеда сумели определить площадимногоугольников и круга, объём призмы и цилиндра, пирамиды и конуса. Но только Архимед нашёл гораздо более общий метод вычисления площадей или объёмов; для этого он усовершенствовал и виртуозно применял метод исчерпывания Евдокса Книдского. В своей работе "Послание к Эратосфену о методе" (иногда называемой "Метод механических теорем") он использовал бесконечно малые для вычисления объёмов. Идеи Архимеда легли впоследствии в основу интегрального исчисления. Архимед сумел установить, что сфера и конусы с общей вершиной, вписанные в цилиндр, соотносятся следующим образом: два конуса : сфера : цилиндр как 1:2:3.

Лучшим своим достижением он считал определение поверхности и объёма шара -- задача, которую до него никто решить не мог. Архимед просил выбить на своей могиле шар, вписанный в цилиндр.

Квадратура сегмента параболы

В сочинении Квадратура параболы Архимед доказал, что площадь сегмента параболы, отсекаемого от неё прямой, составляет 4/3 от площади вписанного в этот сегмент треугольника (см. рисунок). Для доказательства Архимед подсчитал сумму бесконечного ряда:

Каждое слагаемое ряда -- это общая площадь треугольников, вписанных в неохваченную предыдущими членами ряда часть сегмента параболы.

Помимо перечисленного, Архимед вычислил площадь поверхности для сегмента шара и витка открытой им "спирали Архимеда", определил объёмы сегментов шара, эллипсоида, параболоида и двуполостного гиперболоида вращения.

Следующая задача относится к геометрии кривых. Пусть дана некоторая кривая линия. Как определить касательную в любой её точке? Или, если переложить эту проблему на язык физики, пусть нам известен путь некоторого тела в каждый момент времени. Как определить скорость его в любой точке? В школе учат, как проводить касательную к окружности. Древние греки умели, кроме того, находить касательные к эллипсу, гиперболе и параболе. Первый общий метод решения и этой задачи был найден Архимедом. Этот метод впоследствии лёг в основу дифференциального исчисления.

Схема архимедова метода вычисления числа р

Огромное значение для развития математики имело вычисленное Архимедом отношение длины окружности к диаметру. В работе "Об измерении круга" Архимед дал своё знаменитое приближения для числа р: "архимедово число" . Более того, он сумел оценить точность этого приближения: . Для доказательства он построил для круга вписанный и описанный 96-угольники и вычислил длины их сторон.

В математике, физике и астрономии очень важно уметь находить наибольшие и наименьшие значения изменяющихся величин -- ихэкстремумы. Например, как среди цилиндров, вписанных в шар, найти цилиндр, имеющий наибольший объём? Все такие задачи в настоящее время могут быть решены с помощью дифференциального исчисления. Архимед первым увидел связь этих задач с проблемами определения касательных и показал, как решать задачи на экстремумы.

Идеи Архимеда почти на два тысячелетия опередили своё время. Только в XVII веке учёные смогли продолжить и развить труды великого греческого математика.

Сочинения

Изображение Архимеда на медали Филдса.

До наших дней сохранились:

§ Квадратура параболы / фефсбгщнйум?т рбсбвпл?т -- определяется площадь сегмента параболы.

§ О шаре и цилиндре / рес? уцбЯсбт кб? кхлЯндспх -- доказывается, что объём шара равен 2/3 от объёма описанного около него цилиндра, а площадь поверхности шара равна площади боковой поверхности этого цилиндра.

§ О спиралях / рес? ?лЯкщн -- выводятся свойства спирали Архимеда.

§ О коноидах и сфероидах / рес? кщнпейдЭщн кб? уцбйспейдЭщн -- определяются объёмы сегментов параболоидов, гиперболоидов и эллипсоидов вращения.

§ О равновесии плоских фигур / рес? ?упсспрй?н -- выводится закон равновесия рычага; доказывается, что центр тяжести плоского треугольника находится в точке пересечения его медиан; находятся центры тяжести параллелограмма, трапеции и параболического сегмента.

§ Послание к Эратосфену о методе / рс?т ?сбфпуиЭнзн ?цпдпт -- обнаружено в 1906 году, по тематике частично дублирует работу "О шаре и цилиндре", но здесь используется механический метод доказательства математических теорем.

§ О плавающих телах / рес? ф?н ?чпхмЭнщн -- выводится закон плавания тел; рассматривается задача о равновесии сечения параболоида, моделирующего корабельный корпус.

§ Измерение круга / кэклпх мЭфсзуйт -- до нас дошёл только отрывок из этого сочинения. Именно в нём Архимед вычисляет приближение для числа р.

§ Псаммит / шбммЯфзт -- вводится способ записи очень больших чисел.

§ Стомахион / уфпмЬчйпн -- дано описание популярной игры.

§ Задача Архимеда о быках / рсьвлзмб впйкьн -- ставится задача, приводимая к уравнению Пелля.

Ряд работ Архимеда сохранился только в арабском переводе:

§ Трактат о построении около шара телесной фигуры с четырнадцатью основаниями;

§ Книга лемм;

§ Книга о построении круга, разделённого на семь равных частей;

§ Книга о касающихся кругах.

Размещено на Allbest.ru


Подобные документы

  • Пифагор Самосский как древнегреческий философ, математик и мистик, создатель религиозно-философской школы пифагорейцев. Краткий очерк его жизни, этапы личностного творческого становления, оценка места и значения в истории. Анализ достижений Пифагора.

    презентация [397,9 K], добавлен 14.12.2012

  • Биография и достижения великого ученого, творца математической школы древней Греции – Пифагора. Пифагорейское учение о натуральном числе как основе мироздания. Использование числовых отношений в геометрических построениях. Формулировка теоремы Пифагора.

    реферат [29,6 K], добавлен 07.01.2012

  • Пифагор как основоположник математики и родоначальник многих мистических учений, учредитель религиозно-этического братства и создатель научно-философской школы, ставшей союзом Истины, Добра и Красоты. Краткая биография ученого и главные его достижения.

    презентация [890,3 K], добавлен 19.10.2014

  • Образ Пифагора Самосского, биография ученого-мыслителя в контексте античной культуры. Основные идеи пифагорейского учения в арифметике, геометрии, философии, космологии, музыке, их влияние на зарождение и развитие европейской науки от античности до XX в.

    презентация [134,1 K], добавлен 28.11.2013

  • Биографические сведения о жизни греческого философа и математика Пифагора Самосского. Возникновение на юге Италии "Пифагорейской школы". Доказательство основной геометрической теоремы методом разложения математиком ан-Найризи и астрономом Перигэлом.

    презентация [1,6 M], добавлен 01.02.2012

  • Краткий биографический очерк жизненного пути Пифагора. История появления теоремы Пифагора, ее дальнейшее распространение в мире. Формулировка и доказательство теоремы с помощью различных методов. Возможности применения теоремы Пифагора к вычислениям.

    презентация [309,4 K], добавлен 17.11.2011

  • История создания теоремы. Краткая биографическая справка из жизни Пифагора Самосского. Основные формулировки теоремы. Доказательство Евклида, Хоукинса. Доказательство через: подобные треугольники, равнодополняемость. Практическое применение теоремы.

    презентация [3,6 M], добавлен 21.10.2011

  • Популярность и биография великого математика, тайны теоремы Пифагора "О равенстве квадрата гипотенузы прямоугольного треугольника сумме квадратов катетов", история теоремы. Различные способы доказательств теоремы Пифагора, области ее применения.

    презентация [376,2 K], добавлен 28.02.2012

  • Великая (большая и последняя) теорема Ферма, ее доказательство для простых показателей. Целочисленные решение уравнения Пифагора в "Арифметике" Диофанта. Формулы для решения уравнения Пифагора в виде взаимно простых чисел. Преобразование уравнения Ферма.

    реферат [29,1 K], добавлен 19.11.2010

  • Основные открытия Пифагора в области геометрии, географии, астрономии, музыки и нумерологии. Изначальная и алгебраическая формулировки знаменитой теоремы. Один их многочисленных способов доказательства теоремы Пифагора, ее основные следствия и применение.

    презентация [257,4 K], добавлен 05.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.