История развития понятия функции

История появления понятия функции, формулировки ее определения с механической, геометрической и аналитической точек зрения. Роль функциональных зависимостей в познании реального мира. Виды функций и их свойства. Методические рекомендации к их изучению.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 28.09.2011
Размер файла 22,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

ГОУ ВПО «Саха государственная педагогическая академия»

Факультет математики и информатики

Реферат на тему: История развития понятия функции.

Якутск 2011 г.

Содержание

1. История развития понятия функции

2. Виды функций и их свойства

3. Идея соответствия понятия функции

4. Методические рекомендации

Литература

функция аналитический зависимость

1. История развития понятия функции

Функция - одно из основных математических и общенаучных понятий. Оно сыграло и поныне играет большую роль в познании реального мира.

Пропедевтический период (с древнейших времен до 17 века).

Идея функциональной зависимости восходит к древности. Ее содержание обнаруживается уже в первых математически выраженных соотношениях между величинами, в первых правилах действий над числами. В первых формулах для нахождения площади и объема тех или иных фигур. Так, вавилонские ученые (4-5 тыс.лет назад) пусть несознательно, установили, что площадь круга является функцией от его радиуса посредством нахождения грубо приближенной формулы: S=3r2. Примерами табличного задания функции могут служить астрономические таблицы вавилонян, древних греков и индийцев, а примерами словесного задания функции - теорема о постоянстве отношения площадей круга и квадрата на его диаметре или античные определения конических сечений, причем сами эти кривые выступали в качестве геометрических образов соответствующей зависимости.

Введение понятия функции через механическое и геометрическое представления (17 век.)

Начиная лишь с 17 века, в связи с проникновением в математику идеи переменных, понятие функции явно и вполне сознательно применяется.

Путь к появлению понятия функции заложили в 17 веке французские ученые Франсуа Виет и Рене Декарт; они разработали единую буквенную математическую символику, которая вскоре получила всеобщее признание. Введено было единое обозначение: неизвестных - последними буквами латинского алфавита - x, y, z, известных - начальными буквами того же алфавита - a, b, c, ... и т.д. Под каждой буквой стало возможным понимать не только конкретные данные, но и многие другие; в математику пришла идея изменения. Тем самым появилась возможность записывать общие формулы.

Кроме того, у Декарта и Ферма (1601-1665) в геометрических работах появляется отчетливое представление переменной величины и прямоугольной системы координат. В своей “Геометрии” в 1637 году Декарт дает понятие функции, как изменение ординаты точки в зависимости от изменения ее абсциссы; он систематически рассматривал лишь те кривые, которые можно точно представить с помощью уравнений, притом преимущественно алгебраических. Постепенно понятие функции стало отождествляться, таким образом, с понятием аналитического выражения - формулы. В 1671 году Ньютон под функцией стал понимать переменную величину, которая изменяется с течением времени (называл в “флюентой”).

В “Геометрии” Декарта и работах Ферма, Ньютона и Лейбница понятие функции носило по существу интуитивный характер и было связано либо с геометрическими, либо с механическими представлениями: ординаты точек кривых - функция от абсцисс (x); путь и скорость - функция от времени (t) и т.п.

Аналитическое определение функции (17 - начало 19 века).

Само слово “функция” (от латинского functio -совершение, выполнение) впервые было употреблено немецким математиком Лейбницем в 1673г. в письме к Гюйгенсу (под функцией он понимал отрезок, длина которого меняется по какому-нибудь определенному закону), в печати ввел с 1694 года. Начиная с 1698 года, Лейбниц ввел также термины “переменная” и “константа”. В 18 веке появляется новый взгляд на функцию как на формулу, связывающую одну переменную с другой. Это так называемая аналитическая точка зрения на понятие функции. Подход к такому определению впервые сделал швейцарский математик Иоганн Бернулли (1667-1748), который в 1718 году определил функцию следующим образом: “функцией переменной величины называют количество, образованное каким угодно способ из этой переменной величины и постоянных”. Для обозначения произвольной функции от x Бернулли применил знак j (x), называя характеристикой функции, а также буквы x или e ; Лейбниц употреблял x1, x2 вместо современных f1(x) , f2(x). Эйлер обозначил через f : y, f: (x + y) то, что мы ныне обозначаем через f(x), f(x+y).

Наряду с Эйлером предлагает использовать буквы F ,Y и другие. Даламбер сделал шаг вперед на пути к современным обозначениям, отбрасывая двоеточие Эйлера; он пишет, например, j t, j(t+s).

Окончательную формулировку определения функции с аналитической точки зрения сделал в 1748 году ученик Бернулли Эйлер (во “Введении в анализ бесконечного”): “Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого количества и чисел или постоянных количеств”. Так понимали функцию на протяжении почти всего 18 века Даламбер (1717-1783), Лагранж (1736-1813), Фурье (1768-1830) и другие видные математики. Что касается Эйлера, то он не всегда придерживался выше указанного определения; в его работах понятие функции подвергалось дальнейшему развитию в соответствии с запросами математического анализа.

В “Дифференциальном исчислении”, вышедшем в свет в 1755 году, Эйлер дает общее определение функции: “Когда некоторые количества зависят друг от друга таким образом, что при изменении последних и сами они подвергаются изменению, то первые называют функцией вторых”. “Это наименование, - продолжает далее Эйлер - имеет чрезвычайно широкий характер; оно охватывает все способы, какими одно количество определяется с помощью других”.

Как видно из определенных определений, само понятие функции фактически отождествлялось с аналитическим выражением. Новые шаги в развитии естествознания и математики вызвали и дальнейшее обобщение понятия функции.

Одним из нерешенных вопросов, связанных с понятием функции, по поводу которого велась ожесточенная борьба мнений, был следующий: можно ли одну функцию задать несколькими аналитическими выражениями?

Большой вклад в разрешение спора Эйлера, Даламбера, Бернулли и других ученых 18 века по поводу того, что стоит понимать под функцией, внес французский математик Жан Батист Жозеф Фурье (1768-1830), занимавшийся в основном математической физикой. В представляемых им в Парижскую АН в 1807-1811 гг. Мемуарах по теории распространения тепла в твердом теле, Фурье привел и первые примеры функций, которые заданы на различных участках различными аналитическими выражениями.

Из трудов Фурье следовало, что любая кривая независимо от того, из скольких и каких разнородных частей она состоит, может быть представлена в виде единого аналитического выражения и что имеются также прерывные кривые, изображаемые аналитическим выражением. В своем “Курсе алгебраического анализа”, опубликованном в 1721г., французский математик О.Коши обосновал выводы Фурье. Таким образом, на известном этапе развития физики и математики стало ясно, что приходится пользоваться и такими функциями, для определения которых очень сложно или даже невозможно ограничиться одним лишь аналитическим аппаратом. Последний стал тормозить требуемое математикой и естествознанием расширение понятия функции.

2. Виды функций и их свойства

· Постоянная функция- функция, заданная формулой у=b, где b-некоторое число. Графиком постоянной функции у=b является прямая, параллельная оси абсцисс и проходящая через точку (0;b) на оси ординат

· Прямая пропорциональность- функция, заданная формулой у=kx, где ке0. Число k называется коэффициентом пропорциональности.

Cвойства функции y=kx:

1. Область определения функции- множество всех действительных чисел

2. y=kx - нечетная функция

3. При k>0 функция возрастает, а при k<0 убывает на всей числовой пря-мой

· Линейная функция- функция, которая задана формулой y=kx+b, где k и b-действительные числа. Если в частности, k=0, то получаем постоянную функцию y=b; если b=0, то получаем прямую про-порциональность y=kx.

Свойства функции y=kx+b:

1. Область определения- множество всех действительных чисел

2. Функция y=kx+b общего вида, т.е. ни чётна, ни нечётна.

3. При k>0 функция возрастает, а при k<0 убывает на всей числовой пря-мой

Графиком функции является прямая.

· Обратная пропорциональность- функция, заданная формулой y=k/х, где kе0 Число k называют коэффициентом обратной пропорциональности.

Свойства функции y=k/x:

1. Область определения- множество всех действительных чисел кроме нуля

2. y=k/x- нечетная функция

3. Если k>0, то функция убывает на промежутке (0;+?) и на промежутке (-?;0). Если k<0, то функция возрастает на промежутке (-?;0) и на промежутке (0;+?).

Графиком функции является гипербола.

· Функция y=x2

Свойства функции y=x2:

1. Область определения- вся числовая прямая

2. y=x2 - четная функция

3. На промежутке [0;+?) функция возрастает

4. На промежутке (-?;0] функция убывает

Графиком функции является парабола.

· Функция y=x3

Свойства функции y=x3:

1. Область определения- вся числовая прямая

2. y=x3 -нечетная функция

3. Функция возрастает на всей числовой прямой

Графиком функции является кубическая парабола

· Степенная функция с натуральным показателем- функция, заданная фор-мулой y=xn, где n- натуральное число. При n=1 получаем функцию y=x, ее свойства рассмотрены в п.2. При n=2;3 получаем функции y=x2; y=x3. Их свойства рассмотрены выше.

Пусть n- произвольное четное число, большее двух: 4,6,8... В этом случае функция y=xn обладает теми же свойствами, что и функция y=x2. График функции напоминает параболу y=x2, только ветви графика при |х|>1 тем круче идут вверх, чем больше n, а при |х|<1 тем «теснее прижимаются» к оси Х, чем больше n.

Пусть n- произвольное нечетное чис-ло, большее трех: 5,7,9... В этом случае функция y=xn обладает теми же свойствами, что и функция y=x3. График функции напоминает кубическую параболу.

· Степенная функция с целым отрица-тельным показателем- функция, заданная формулой y=x-n, где n- натуральное число. При n=1 получаем y=1/х, свойства этой функции рассмотрены в п.4.

Пусть n- нечетное число, большее единицы: 3,5,7... В этом случае функ-ция y=x-n обладает в основном теми же свойствами, что и функция y=1/х.

Пусть n- четное число, например n=2.

Свойства функции y=x-2:

1. Функция определена при всех xе0

2. y=x-2 - четная функция

3. Функция убывает на (0;+?) и возрастает на (-?;0).

Теми же свойствами обладают любые функции при четном n, большем двух.

· Функция y=х

Свойства функции y=х

1. Область определения - луч [0;+?).

2. Функция y=vх - общего вида

3. Функция возрастает на луче [0;+ ?).

· ункция y=3х

Свойства функции y=3vх:

1. Область определения- вся числовая прямая

2. Функция y=3vх нечетна.

3. Функция возрастает на всей число-вой прямой.

11)Функция y=nvх

При четном n функция обладает теми же свойствами, что и функция y=vх. При нечетном n функция y=nvх обладает теми же свойствами, что и функция y=3vх.

· Степенная функция с положительным дробным показателем функция, заданная формулой y=xr, где r- положительная несократимая дробь.

Свойства функции y=xr:

1. Область определения- луч [0;+?).

2. Функция общего вида

3. Функция возрастает на [0;+?).

· Степенная функция с отрицательным дробным показателем функция, заданная формулой y=x-r, где r- положительная несократимая дробь.

Свойства функции y=x-r:

1. Обл. определения -промежуток (0;+ ?)

2. Функция общего вида

3. Функция убывает на (0;+ ?)

· Обратная функция

Если функция y=f(x) такова, что для любого ее значения yo уравнение f(x)=yo имеет относительно х единст-венный корень, то говорят, что функ-ция f обратима.

Если функция y=f(x) определена и возрастает (убывает) на промежутке Х и областью ее значений является про-межуток Y, то у нее существует обрат-ная функция, причем обратная функция определена и возрастает(убывает) на Y.

Таким образом, чтобы построить график функции, обратной к функции y=f(x), надо график функции y=f(x) подвергнуть преобразованию симмет-рии относительно прямой y=x.

· Сложная функция- функция, аргу-ментом которой является другая любая функция.

Возьмем, к примеру, функцию y=x+4. Подставим в аргумент функцию y=x+2. Получается: y(x+2)=x+2+4=x+6. Это и будет являться сложной функцией.

3. Идея соответствия понятия функции (19 век).

В 1834 году в работе “Об исчезании тригонометрических строк” Н.И. Лобачевский, развивая вышеупомянутое эйлеровское определение функции в 1755г., писал: “Общее понятие требует, чтобы функцией от x называть число, которое дается для каждого x и вместе с x постепенно изменяется. Значение функции может быть дано и аналитическим выражением, или условием, которое подает средство испытывать все числа и выбирать одно из них; или, наконец, зависимость может существовать, или оставаться неизвестной... Обширный взгляд теории допускает существование зависимости только в том смысле, чтобы числа, одни с другими в связи, принимать как бы данными вместе”.

Еще до Лобачевского аналогичная точка зрения на понятие функции была высказана чешским математиком Б. Больцано. Таким образом, современное определение функции, свободное от упоминании об аналитическом задании, обычно приписываемое Дирихле, неоднократно предлагалось и до него. В 1837 году немецкий математик П.Л. Дирихле так сформулировал общее определение понятия функции: “y есть функция переменной x (на отрезке a Ј x Ј b), если каждому значению x на этом отрезке соответствует совершенно определенное значение y, причем безразлично каким образом установлено это соответствие - аналитической формулой, графиком, таблицей либо даже просто словами”.

Примером, соответствующим этому общему определению, может служить так называемая “функция Дирихле” j (x).

Эта функция задана двумя формулами и словесно. Она играет известную роль в анализе. Аналитически ее можно определить лишь с помощью довольно сложной формулы, не способствующей успешному изучению ее свойств. Таким образом, примерно в середине 19 века после длительной борьбы мнений понятие функции освободилось от рамок аналитического выражения, от единовластия аналитической формулы. Главный упор в основном общем определении понятия функции делается на идею соответствия.

Во второй половине 19 века после создания теории множеств в понятие функции, помимо идеи соответствия была включена и идея множества. Таким образом, в полном своем объеме общее определение понятия функции формулируется следующим образом: если каждому элементу x множества А поставлен в соответствие некоторый определенный элемент y из множества В, то говорят, что на множестве А задана функция y=f(x), или что множество А отображено на множество В. В первом случае элементы x множества А называют значениями аргумента, а элементы их множества В - значениями функции; во втором случае x - прообразы, y - образы. В современном смысле рассматривают функции, определенные для множества значений x, которые возможно, и не заполняют отрезка a Ј x Ј b, о котором говорится в определении Дирихле. Достаточно указать, например, на функцию-факториал y=n!, заданную на множестве натуральных чисел. Общее понятие функции применимо, конечно, не только к величинам и числам, но и к другим математическим объектам. Например, к геометрическим фигурам. При любом геометрическом преобразовании мы имеем дело с функцией. Другими синонимами термина “функция” в различных отделах математики являются: соответствие, отображение, оператор, функционал и др.

Дальнейшее развитие математической науки в 19 веке основывалось на общем определении функции Дирихле, ставшим классическим.

Дальнейшее развитие понятия функции (20 век - ...).

Уже с самого начала 20 века определение Дирихле стало вызывать некоторые сомнения среди части математиков. Еще важнее была критика физиков, натолкнувшихся на явления, которые потребовали более широкого взгляда на физику. Необходимость дальнейшего расширения понятия функции стала особенно острой после выхода в свет в 1930 году книги “Основы квантовой механики” Поля Дирака, крупнейшего английского физика, одного из основателей квантовой механики. Дирак ввел так называемую дельта-функцию, которая выходила далеко за рамки классического определения функции. В связи с этим советский математик Н.М. Гюнтер и другие ученые опубликовали в 30-40 годах нашего столетия работы, в которых неизвестными являются не функции точки, а “функции области”, что лучше соответствует физической сущности явлений. Так, например, температуру тела в точке практически определить нельзя, в то время как температура в некоторой области тела имеет конкретный физический смысл.

В общем виде понятие обобщенной функции было введено французом Лораном Шварцем. В 1936 году, 28-летний советский математик и механик С.Л. Соболев первым рассмотрел частный случай обобщенной функции, включающей и дельта-функцию, и применил созданную теорию к решению ряда задач математической физики. Важный вклад в развитие теории обобщенной функции внести ученики и последователи Шварца - И.М. Гельфант, Г.Е. Шилов и др.

4. Методические рекомендации

Школьный курс изучения функции строится по аналогии с развитием в истории понятия функции.

До 7 класса идет накопление знаний, необходимых для введения понятия функции. Рассматриваются зависимости площадей фигур от длины их сторон, радиусов; решаются задачи, в которых одна величина зависит от другой и т.д. Этот курс можно назвать пропедевтическим.

В 7 классе впервые дается определение понятия “функция”.

Дается определение функции на основе идеи зависимости и соответствия одной величины от другой. После введения определения понятия можно рассказать о том, где люди встречались с функциональными зависимостями, кто впервые ввел этот термин и что означает само слово “функция”. Также в этом классе изучаются различные способы задания функции. Можно более подробно рассказать о табличном способе задания функции как о наиболее старом: привести примеры из истории математики, рассказать о значении и роли математических таблиц для математиков прошлых столетий.

Примерами могут служить таблицы квадратов, кубов чисел, арифметических и квадратных корней, которые учащиеся могут увидеть на форзацах своих учебников, которыми они будут пользоваться позже.

Чуть позже можно познакомить учащихся с тем, что функция может быть не только от одной переменной, но и от нескольких. Полезно будет рассказать о французском математике Николе Ореме и его работе “О конфигурации качества”, в которой он высказал идею функциональной зависимости от одной, двух и трех переменных и ее графическом изображении.

В 9 классе еще раз дается определение функции на основе идеи зависимости одной переменной от другой: “Функцией называют такую зависимость переменной y от переменной x, при которой каждому значению переменной x соответствует единственное значение переменной y”. Можно дать учащимся задание проследить в истории математики, на каком этапе развития понятия функции появляется такое определение и кто его вводит. Кроме того, в этом классе вводится символическое обозначение функции. Учащимся необходимо рассказать, кто ввел эту запись.

В 10-11 классах вводится современное понятие функции как соответствие между двумя множествами: “числовой функцией с областью определения D называется соответствие, при котором каждому числу x из множества D сопоставляется по некоторому правилу число y, зависящее от D”. Снова нужно проследить, когда появляется впервые такое определение, в чем его отличие от ранее существовавших.

Одному-двум учащимся можно предложить подготовить доклад на тему: “История развития понятия функции”. Можно дать сравнение уже известных им определений функции с новым определением после того, как этот доклад будет представлен в классе.

Нужно напомнить учащимся о том, что математика возникла из практических нужд человека, отсюда необходимо введение нового определения функции. Здесь нужно сказать о проблеме, с которой столкнулись физики, в частности, Поль Дирак; упомянуть его дельта-функцию, которая выходит далеко за рамки классического определения функции. Необходимо также сказать о работах, в которых неизвестными являются не функции точки, а “функции области”, что лучше соответствует физической сущности явления.

Нужно также сказать и о том, что на этом развитие понятия функции не остановилось (понятие обобщенной функции) и, скорее всего, будет изменяться дальше, приспосабливаясь к нуждам науки.

Список литературы

1. Глейзер Г.И. История математики в школе: 7-8 класс - М.: Просвещение. - 1982.

2. Глейзер Г.И. История математики в школе: 9-10 класс - М.: Просвещение. - 1983.

3. Чистяков В.Д. Исторические экскурсы на уроках математики в средней школе. - Минск: “Народная освета”. - 1969.

4. Малыгин К.А. Элементы историзма в преподавании математики в средней школе. - М.:Учпедгиз. - 1958.

5. Математический энциклопедический словарь. - М.: Сов.энциклопедия. - 1988.

6. Энциклопедический словарь юного математика. - М.: Педагогика. - 1989.

Размещено на Allbest.


Подобные документы

  • Роль интерполяции функций, значения которой совпадают со значениями заданной функции в некотором числе точек. Интерполирование функции полиномами, непосредственно непрерывных функций на отрезке и в точке. Определение понятия погрешности интерполяции.

    курсовая работа [157,4 K], добавлен 10.04.2011

  • Область определения и свойства функции (четность, нечетность, периодичность). Точки пересечения функции с осями координат. Непрерывность функции. Характер точек разрыва. Асимптоты. Экстремумы функции. Исследование функции на монотонность. Точки перегиба.

    презентация [298,3 K], добавлен 11.09.2011

  • Понятие функции в древнем мире: Египет, Вавилон, Греция. Графическое изображение зависимостей, история возникновения. Вклад в развитие графиков функций Рене Декартом. Определение функций: понятие и способы задания. Методы построения графиков функций.

    реферат [3,5 M], добавлен 09.05.2009

  • Различные трактовки понятия функции в школьном курсе математики. Функция и задание ее аналитическим выражением. Область определения функции и область значений функции. Тесты по теме "Числовые функции. Четные и нечетные функции. Периодические функции".

    дипломная работа [213,1 K], добавлен 07.09.2009

  • Свойства и характеристика интегралов с бесконечными пределами, признаки их сходимости. Расчет несобственных интегралов с бесконечными пределами. Определение несобственного интеграла от разрывной функции с аналитической и геометрической точки зрения.

    реферат [144,5 K], добавлен 23.08.2009

  • Понятие и основные свойства обратной функции. Нахождение функции, обратной данной. Область определения функции. Обратимость монотонной функции. Построение графиков функций и определение их свойств. Симметричность графиков функций относительно прямой у=х.

    презентация [98,6 K], добавлен 18.01.2015

  • Разработка методических аспектов обучения учащихся элементам теории вероятностей. Способы определения, последовательности изложения трактовок вероятности и формирование аксиоматического понятия. Задачи, решаемые при изучении геометрической вероятности.

    курсовая работа [143,2 K], добавлен 03.07.2011

  • История развития и становления математического понятия функции. Абстрактные характеристики упорядоченных алгебр многоместных функций: P-алгебры и D-алгебры. Исследование теории суперпозиций алгебраических структур n-местных функций Менгера и Глускера.

    курсовая работа [263,7 K], добавлен 22.12.2015

  • Определения понятия множество. Предельная точка множества, предел функции в точке. Эквивалентные, счетные и несчетные множества. Замкнутые и открытые множества. Функции на множестве. Свойства непрерывных функций на замкнутом ограниченном множестве.

    курсовая работа [222,3 K], добавлен 11.01.2011

  • Предел для функции действительного аргумента и для функции комплексного переменного. Формулировка необходимого условия дифференцируемости функции комплексного переменного (условие Коши-Римана). Понятия и примеры правильных и особых точек функции.

    презентация [74,9 K], добавлен 17.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.