Анализ основных понятий и особенностей сходимости числовых рядов

Понятие бесконечных сумм, история их исследования с древних времен до сегодня. Определение числового ряда и сходимости. Основные свойства числовых рядов. Достаточные условия сходимости числового ряда: признак сравнения, Даламбера, интегральный Коши.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 24.06.2011
Размер файла 122,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

13

Размещено на http://www.allbest.ru/

Введение

Понятие бесконечных сумм фактически было известно ученым Древней Греции (Евдокс, Евклид, Архимед). Нахождение бесконечных сумм являлось составной частью так называемого метода исчерпывания, широко используемого древнегреческими учеными для нахождения площадей фигур, объемов тел, длин кривых и т.д. Так, например, Архимед для вычисления площади параболического сегмента (т.е. фигуры, ограниченной прямой и параболой) нашел сумму бесконечной геометрической прогрессии со знаменателем 1/4.

Ряд, как самостоятельное понятие, математики стали использовать в XVII в. И. Ньютон и Г. Лейбниц применяли ряды для решения алгебраических и дифференциальных уравнений. Теория рядов в XVIII-XIX вв. развивалась в работах Я. и И. Бернулли, Б. Тейлора, К. Маклорена, Л. Эйлера, Ж. Даламбера, Ж. Лагранжа и др. Строгая теория рядов была создана в XIX в. на основе понятия предела в трудах К. Гаусса, Б. Больцано, О. Коши, П. Дирихле, Н. Абеля, К. Вейерштрасса, Б. Римана и др.

Актуальность изучения данной проблемы обусловлена тем, что раздел математики, позволяющий решить любую корректно поставленную задачу с достаточной для практического использования точностью, называется теорией рядов. Даже если некоторые тонкие понятия математического анализа появились вне связи с теорией рядов, они немедленно применялись к рядам, которые служили как бы инструментом для испытания значимости этих понятий. Такое положение сохраняется и сейчас. Таким образом, представляется актуальным изучить числовые ряды, их основные понятия и особенности сходимости ряда. Этим и обусловлен выбор темы исследования: «Ряды».

Цель исследования изучить числовые ряды, их основные понятия и особенности сходимости ряда, которая достигается с помощью следующих задач:

- изучить числовые ряды, их сущность и основные свойства.

- определить сходимость числовых рядов и ее основные признаки

1. Понятие числового ряда

1.1 Определение числового ряда и сходимости

В математических приложениях, а также при решении некоторых задач в экономике, статистике и других областях рассматриваются суммы с бесконечным числом слагаемых. Здесь мы дадим определение того, что понимается под такими суммами.

Пусть задана бесконечная числовая последовательность

, , …, , …

Определение 1.1. Числовым рядом или просто рядом называется выражение (сумма) вида

. (1.1)

Числа называются членами ряда, - общим или n-м членом ряда.

Чтобы задать ряд (1.1) достаточно задать функцию натурального аргумента вычисления -го члена ряда по его номеру

Пример 1.1. Пусть . Ряд

(1.2)

называется гармоническим рядом.

Пример 1.2. Пусть , Ряд

(1.3)

называется обобщенным гармоническим рядом. В частном случае при получается гармонический ряд.

Пример 1.3. Пусть =. Ряд

(1.4)

называется рядом геометрической прогрессии.

Из членов ряда (1.1) образуем числовую последовательность частичных сумм где - сумма первых членов ряда, которая называется n-й частичной суммой, т.е.

,

,

,

…………………………….

, (1.5)

…………………………….

Числовая последовательность при неограниченном возрастании номера может:

1) иметь конечный предел;

2) не иметь конечного предела (предел не существует или равен бесконечности).

Определение 1.2. Ряд (1.1) называется сходящимся, если последовательность его частичных сумм (1.5) имеет конечный предел, т.е.

В этом случае число называется суммой ряда (1.1) и пишется

.

Определение 1.3. Ряд (1.1) называется расходящимся, если последовательность его частичных сумм не имеет конечного предела.

Расходящемуся ряду не приписывают никакой суммы.

Таким образом, задача нахождения суммы сходящегося ряда (1.1) равносильна вычислению предела последовательности его частичных сумм.

Рассмотрим несколько примеров.

Пример 1.4. Доказать, что ряд

сходится, и найти его сумму.

Найдем n-ю частичную сумму данного ряда .

Общий член ряда представим в виде .

Тогда

Отсюда имеем: . Следовательно, данный ряд сходится и его сумма равна 1:

Пример 1.5. Исследовать на сходимость ряд

(1.6)

Для этого ряда

. Следовательно, данный ряд расходится.

Замечание. При ряд (1.6) представляет собой сумму бесконечного числа нулей и является, очевидно, сходящимся.

Пример 1.6. Исследовать на сходимость ряд

(1.7)

Для этого ряда

В этом случае предел последовательности частичных сумм не существует, и ряд расходится.

Пример 1.7. Исследовать на сходимость ряд геометрической прогрессии (1.4):

Нетрудно показать, что n-я частичная сумма ряда геометрической прогрессии при задается формулой

.

Рассмотрим случаи:

1) Тогда и .

Следовательно, ряд сходится и его сумма равна

2) .

Тогда и .

Следовательно, ряд расходится.

3) или Тогда исходный ряд имеет вид (1.6) или (1.7) соответственно, которые расходятся. Окончательно имеем

(1.8)

Пример 1.8. Найти сумму ряда

Очевидно, что данный ряд является рядом геометрической прогрессии. В нашем случае . Тогда из формулы (1.8) следует

.

Исследование на сходимость гармонического ряда (1.2) и обобщенного гармонического ряда (1.3) будет проведено в следующем разделе.

1.2 Основные свойства числовых рядов

Свойства суммы конечного числа слагаемых отличаются от свойств ряда, т.е. суммы бесконечного числа слагаемых. Так, в случае конечного числа слагаемых их можно группировать в каком угодно порядке, от этого сумма не изменится. Существуют сходящиеся ряды (условно сходящиеся, которые будут рассмотрены в разделе 5), для которых, как показал Риман Георг Фридрих Бернхард, меняя надлежащим образом порядок следования их членов, можно сделать сумму ряда равной какому угодно числу, и даже расходящийся ряд.

Пример 2.1. Рассмотрим расходящийся ряд вида (1.7)

Сгруппировав его члены попарно, получим сходящийся числовой ряд с суммой, равной нулю:

С другой стороны, сгруппировав его члены попарно, начиная со второго члена, получим также сходящийся ряд, но уже с суммой, равной единице:

Сходящиеся ряды обладают некоторыми свойствами, которые позволяют действовать с ними, как с конечными суммами. Так их можно умножать на числа, почленно складывать и вычитать. У них можно объединять в группы любые рядом стоящие слагаемые.

Теорема 2.1. (Необходимый признак сходимости ряда).

Если ряд (1.1) сходится, то его общий член стремится к нулю при неограниченном возрастании n, т.е.

(2.1)

Доказательство теоремы следует из того, что , и если

S - сумма ряда (1.1), то

Условие (2.1) является необходимым, но недостаточным условием для сходимости ряда. Т. е., если общий член ряда стремится к нулю при , то это не значит, что ряд сходится. Например, для гармонического ряда (1.2) однако, как будет показано ниже, он расходится.

Следствие (Достаточный признак расходимости ряда).

Если общий член ряда не стремится к нулю при , то этот ряд расходится.

Пример 2.2. Исследовать на сходимость ряд

.

Для этого ряда

Следовательно, данный ряд расходится.

Рассмотренные выше расходящиеся ряды (1.6), (1.7) также являются таковыми в силу того, что для них не выполняется необходимый признак сходимости. Для ряда (1.6) предел для ряда (1.7) предел не существует.

Свойство 2.1. Сходимость или расходимость ряда не изменится, если произвольным образом удалить из него, добавить к нему, переставить в нем конечное число членов (при этом для сходящегося ряда его сумма может измениться).

Доказательство свойства следует из того, что ряд (1.1) и любой его остаток сходятся или расходятся одновременно.

Свойство 2.2. Сходящийся ряд можно умножать на число, т.е., если ряд (1.1) сходится, имеет сумму S и c - некоторое число, тогда

Доказательство следует из того, что для конечных сумм справедливы равенства

Свойство 2.3. Сходящиеся ряды можно почленно складывать и вычитать, т.е. если ряды ,

сходятся,

то и ряд

сходится и его сумма равна т.е.

.

Доказательство следует из свойств предела конечных сумм, т.е.

Пример 2.3. Вычислить сумму ряда

.

Общий член ряда представим в виде

Тогда исходный ряд можно представить в виде почленной разности двух сходящихся рядов геометрической прогрессии

Используя формулу (1.8), вычислим суммы соответствующих рядов геометрической прогрессии.

Для первого ряда поэтому

.

Для второго ряда поэтому

Окончательно имеем

.

2. Понятие числового ряда

интегральный сходимость числовой ряд

Определить сходимость ряда (1.1) и найти его сумму в случае сходимости непосредственно по определению 1.1 как предела последовательности частичных сумм, весьма затруднительно. Поэтому существуют достаточные признаки определения сходится ряд или расходится. В случае его сходимости приближенным значением его суммы с любой степенью точности может служить сумма соответствующего числа первых n членов ряда.

Здесь будем рассматривать ряды (1.1) с положительными (неотрицательными) членами, т.е. ряды, для которых Такие ряды будем называть положительными рядами.

2.1 Признак сравнения

Пусть даны два положительных ряда

, (3.1)

, (3.2)

и выполняются условия для всех n=1,2,…

Тогда: 1) из сходимости ряда (3.2) следует сходимость ряда (3.1);

2) из расходимости ряда (3.1) следует расходимость ряда (3.2).

Доказательство. 1. Пусть ряд (3.2) сходится и его сумма равна В. Последовательность частичных сумм ряда (3.1) является неубывающей ограниченной сверху числом В, т.е.

Тогда в силу свойств таких последовательностей следует, что она имеет конечный предел, т.е. ряд (3.1) сходится.

2. Пусть ряд (3.1) расходится. Тогда, если ряд (3.2) сходится, то в силу доказанного выше пункта 1 сходился бы и исходный ряд, что противоречит нашему условию. Следовательно ряд (3.2) также расходится.

Этот признак удобно применять к определению сходимости рядов, сравнивая их с рядами, сходимость которых уже известна.

Пример 3.1. Исследовать на сходимость ряд

Члены ряда положительны и меньше соответствующих членов сходящегося ряда геометрической прогрессии

т. к. , n=1,2,…

Следовательно, по признаку сравнения исходный ряд также сходится.

Пример 3.2. Исследовать на сходимость ряд

Члены данного ряда положительны и больше соответствующих членов расходящегося гармонического ряда

т. к.

Следовательно, по признаку сравнения исходный ряд расходится.

2.2 Признак Даламбера

Пусть члены положительного ряда (1.1) таковы, что существует предел

Тогда: 1) при q < 1 ряд (1.1) сходится;

2) при q > 1 ряд (1.1) расходится;

3) при q = 1 о сходимости ряда (1.1) ничего сказать нельзя, необходимы дополнительные исследования.

Замечание: Ряд (1.1) будет расходиться и в том случае, когда

Пример 3.3. Исследовать на сходимость ряд

.

Применим предельный признак Даламбера.

В нашем случае .

Тогда

Следовательно, исходный ряд сходится.

Пример 3.4. Исследовать на сходимость ряд

Применим предельный признак Даламбера:

Следовательно, исходный ряд сходится.

Пример 3.5. Исследовать на сходимость ряд

Применим предельный признак Даламбера:

Следовательно, исходный ряд расходится.

Замечание. Применение предельного признака Даламбера к гармоническому ряду не дает ответа о сходимости этого ряда, т. к. для этого ряда

2.3 Признак Коши

Пусть члены положительного ряда (1.1) таковы, что существует предел

Тогда: 1) при q < 1 ряд (1.1) сходится;

2) при q > 1 ряд (1.1) расходится;

3) при q = 1 о сходимости ряда (1.1) ничего сказать нельзя, необходимы дополнительные исследования.

Пример 3.6. Исследовать на сходимость ряд

Применим предельный признак Коши:

Следовательно, исходный ряд сходится.

2.4 Интегральный признак Коши

Пусть функция f(x) непрерывная неотрицательная невозрастающая функция на промежутке

Тогда ряд и несобственный интеграл сходятся или расходятся одновременно.

Пример 3.7. Исследовать на сходимость гармонический ряд

Применим интегральный признак Коши.

В нашем случае функция удовлетворяет условию теоремы 3.4. Исследуем на сходимость несобственный интеграл

Имеем .

Несобственный интеграл расходится, следовательно, исходный гармонический ряд расходится также.

Пример 3.8. Исследовать на сходимость обобщенный гармонический ряд

Функция удовлетворяет условию теоремы 3.4.

Исследуем на сходимость несобственный интеграл

Рассмотрим следующие случаи:

1) пусть Тогда обобщенный гармонический ряд есть гармонический ряд, который расходится, как показано в примере 3.7.

2) пусть Тогда

Несобственный интеграл расходится, и, следовательно, ряд расходится;

3) пусть Тогда

Несобственный интеграл сходится, и, следовательно, ряд сходится.

Окончательно имеем

Замечания. 1. Обобщенный гармонический ряд будет расходиться при , т. к. в этом случае не выполняется необходимый признак сходимости: общий член ряда не стремится к нулю.

2. Обобщенный гармонический ряд удобно использовать при применении признака сравнения.

Пример 3.9. Исследовать на сходимость ряд

Члены ряда положительны и меньше соответствующих членов сходящегося обобщенного гармонического ряда

т. к. и параметр

Следовательно, исходный ряд сходится (по признаку сравнения).

Заключение

В ходе выполнения работы нами было рассмотрено понятие числового ряда и достаточные условия сходимости числового ряда. В данных главах мы дали характеристику определению числового ряда и сходимости, изучили основные свойства числовых рядов и их признаки.

Ряды широко используются в математике и ее приложениях, в теоретических исследованиях, так и при приближенных численных решениях задач. Многие числа могут быть записаны в виде специальных рядов, с помощью которых удобно вычислять их приближенные значения с нужной точностью. Метод разложения в ряды является эффективным методом изучения функций. Он применяется для вычисления приближенных значений функций, для вычисления и оценок интегралов, для решения всевозможных уравнений (алгебраических, дифференциальных, интегральных).

Литература

1. Высшая математика: Общий курс: Учеб. - 2-е изд., / А.И. Яблонский, А.В. Кузнецов, Е.И. Шилкина и др.; Под общ. ред. С.А. Самаля. - Мн.: Выш. шк., 2000. - 351 с.

2. Марков Л.Н., Размыслович Г.П. Высшая математика. Часть 2. Основы математического анализа и элементы дифференциальных уравнений. - Мн.: Амалфея, 2003. - 352 с.

Размещено на Allbest.ru


Подобные документы

  • Рассмотрение особенностей сравнения рядов. Характеристика признаков сходимости Даламбера. Критерий Коши как ряд утверждений в математическом анализе. Анализ геометрической интерпретации интегрального признака. Способы определения сумы числового ряда.

    контрольная работа [214,6 K], добавлен 01.03.2013

  • Описание признака сходимости числовых рядов Даламбера, решение задач на исследование сходимости. Формулировка радикального признака сходимости Коши знакоположительного ряда в предельной форме. Доказательство знакочередующихся и знакопеременных рядов.

    реферат [190,9 K], добавлен 06.12.2010

  • Изучение понятия числового ряда и его суммы. Особенности сходящихся и расходящихся рядов. Число e, как сумма ряда. Критерий Коши сходимости ряда. Алгебраические операции и сходимость. Ряды с неотрицательными членами. Интегральный признак Коши-Маклорена.

    методичка [514,1 K], добавлен 26.06.2010

  • Исследование сходимости числового ряда. Использование признака Даламбера. Исследование на сходимость знакочередующегося ряда. Сходимость рядов по признаку Лейбница. Определение области сходимости степенного ряда. Сходимость ряда на концах интервала.

    контрольная работа [131,9 K], добавлен 14.12.2012

  • Определение условий сходимости положительного ряда и описание свойств гармонических рядов Дирихле. Изучение теорем сравнения рядов и описание схемы Куммера для вывода из нее признаков сравнения ряда. Вывод признаков сравнения Даламбера, Раабе и Бертрана.

    курсовая работа [263,6 K], добавлен 14.06.2015

  • Решение неравенств и определение области сходимости рядов по признаку Даламбера и теореме Лейбница для знакопеременных рядов. Условия и пределы сходимости ряда. Исследование границ интервала. Проверка условия Лейбница при знакочередующемся ряде.

    контрольная работа [127,2 K], добавлен 07.09.2010

  • Первое упоминание и использование числового ряда, его понятие и структура, этапы и направления дальнейшего исследования. Задачи, приводящие к понятию числового ряда и те, в которых он использовался. Признак Даламбера и Коши, Маклорена и сравнения.

    курсовая работа [114,2 K], добавлен 01.10.2014

  • Определение числового ряда, его основные свойства. Ряды геометрической прогрессии. Исследование на сходимость гармонического ряда. Ряды с положительными членами. Признаки сходимости. Знакочередующиеся и знакопеременные ряды. Признак сходимости Лейбница.

    лекция [137,2 K], добавлен 27.05.2010

  • Основные понятия числового и знакопеременного ряда. Необходимые и достаточные признаки сходимости. Признак Лейбница. Исследование на абсолютную и условную сходимость ряда. Действия с суммой бесконечного числа слагаемых, расстановка скобок. Формула Эйлера.

    курсовая работа [501,8 K], добавлен 12.06.2014

  • Условия и анализ заданий по математике: найти сумму ряда, область сходимости функционального ряда, исследовать ряд на сходимость, вычислить сумму ряда с точностью альфа, используя метод неопределённых коэффициентов, признак Даламбера и признак Лейбница.

    контрольная работа [266,9 K], добавлен 27.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.