Дифференциальные уравнения
Запись дифференциальных уравнений в стандартной и операторной форме. Особенности передаточной и частотной функции звена, его временные и частотные характеристики. Специфика позиционных и интегрирующих звеньев. Их уравнения и расчет коэффициентов.
Рубрика | Математика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 22.04.2011 |
Размер файла | 221,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1.ОСНОВНЫЕ ПОНЯТИЯ
1.1 ЗАПИСЬ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В СТАНДАРТНОЙ И ОПЕРАТОРНОЙ ФОРМЕ
В теории автоматического регулирования в настоящее время принято записывать дифференциальные уравнения в двух формах.
Первая форма записи. Дифференциальные уравнения записываются так, чтобы выходная величина и ее производные находились в левой части уравнения, а входная величина и все остальные члены в правой части. Кроме того, принято, чтобы, сама выходная величина находилась в уравнении с коэффициентом единица. Такое уравнение имеет вид:
= (1)
При такой записи коэффициенты k,k1,...,kn называют коэффициентами передачи, а T1,...,Tn постоянными времени данного звена.
Коэффициент передачи показывает отношение выходной величины звена к входной в установившемся режиме, т.е. определяет собой наклон линейной статической характеристики звена.
Размерности коэффициентов передачи определяются как
размерность k = размерность y(t) : размерность g(t)
размерность k1 = размерность y(t) : размерность g(t) (?)
Постоянными времени T1,...,Tn имеют размерность времени.
Вторая форма записи. Считая условно оператор дифференцирования p= алгебраической величиной, произведем замену в уравнении (1):
=
= (2)
1.2 ПЕРЕДАТОЧНАЯ ФУНКЦИЯ ЗВЕНА
Решим уравнение (2) относительно выходной величины y(t):
y(t)==
==
=W1(s)+W2(s)+...+Wn(s)
Здесь W1(s),W2(s),...,Wn(s) - передаточные функции.
При записи уравнений с изображениями выходной и входной величин по Лапласу передаточные функции сливаются в одну.
1.3 ВРЕМЕННЫЕ ХАРАКТЕРИСТИКИ ЗВЕНА
Динамические свойства звена могут быть определены по его переходной функции и функции веса.
Переходная функция h(t) представляет собой переходный процесс на выходе из звена, возникающий при подаче на его вход единичного ступенчатого воздействия - скачкообразного воздействия со скачком, равной единице.
Функция веса w(t) представляет собой реакцию на единичную импульсную функцию. Она может быть получена дифференцированием по времени переходной функции:
w(t)=
1.4 ЧАСТОТНАЯ ПЕРЕДАТОЧНАЯ ФУНКЦИЯ И ЧАСТОТНЫЕ
ХАРАКТЕРИСТИКИ
Важнейшей характеристикой динамического звена является его частотная передаточная функция. Ее можно получить с помощью передаточной функции, заменив линейный оператор s на комплексный j.
Так как передаточная функция есть отношение изображения по Лапласу выходной величины к входной, то при переходе от изображения Лапласа к изображению Фурье, мы получим, что частотная передаточная функция является изображением Фурье функции веса, то есть имеет место интегральное преобразование
W(j)=.
Частотная передаточная функция может быть представлена в следующем виде:
W(j)=U()+jV()
где U() и V() - вещественная и мнимая части.
W(j)=A(),
где A() - модуль частотной передаточной функции, равный отношению амплитуде выходной величины к амплитуде входной, - аргумент частотной передаточной функции, равный сдвигу фаз выходной величины по отношению к входной.
Для наглядного представления частотных свойств звена используются так называемые частотные характеристики.
Амплитудная частотная характеристика (АЧХ) показывает, как пропускает звено сигнал различной частоты. Оценка пропускания делается по отношению амплитуд выходной и входной величин. То есть АЧХ - это модуль частотной передаточной функции:
A()=W(j)
АЧХ строят для всего диапазона частот , т.к. модуль частотной передаточной функции представляет собой четную функцию частоты.
Другой важной характеристикой является фазовая частотная характеристика (ФЧХ), которая находится как аргумент частотной передаточной функции:
=argW(j)
2. ДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЗВЕНЬЕВ
2.1 ПОЗИЦИОННЫЕ ЗВЕНЬЯ
Позиционные звенья - это такие звенья , в которых выходная и входная величины в установившемся режиме связаны линейной зависимостью y(t)=kg(t).Соответственно, переходная функция будет иметь вид W(s)=k, где N(s), L(s) - многочлены.
2.1.1 ИДЕАЛЬНОЕ УСИЛИТЕЛЬНОЕ ( БЕЗЫНЕРЦИОННОЕ ) ЗВЕНО
1. Данное звено описывается следующим уравнением:
aoy(t)=bog(t) (1)
Коэффициенты имеют следующие значения:
ao=2
bo=4
Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao:
y(t)=g(t)
y(t)=kg(t) (2),
где k=-коэффициент передачи.
Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:
y(t)=kg(t) (3)
2. Получим передаточную функцию для идеального звена. Воспользуемся преобразованиями Лапласа:
y(t)=Y(s)
g(t)=G(s)
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
Y(s)=kG(s)
W(s)=k (4)
3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1. Тогда
h(t)=k1(t) (5)
Функцию веса можно получить дифференцированием переходной функции:
w(t)==k(t) (6)
4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи и временные характеристики:
k=2
h(t)=21(t)
w(t)=2(t)
Переходная функция представляет собой ступенчатую функцию с шагом k=2, а функция веса - импульсную функцию, площадь которой равна k=2.
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на j:
W(s)=k
W(j)=k (7)
W(j)=U()+jV()
U()=k
V()=0
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.
A()=W(j)
A()=k (8)
Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
()=argW(j)
()=0 (9)
Для построения логарифмических частотных характеристик вычислим
L()=20lg A()
L()=20lgk
7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.
k=2
A()=2
()=0
L()=20lg2
U()=2
V()=0
Вывод: Примером рассмотренного звена может являться механический редуктор, делитель напряжения, индукционные датчики и т.д. Но безинерционное звено является некоторой идеализацией реальных звеньев. В действительности ни одно звено не может равномерно пропускать все частоты от нуля до бесконечности. Обычно к такому виду сводится одно из реальных звеньев , рассмотренных ниже , если можно пренебречь влиянием динамических процессов.
2.1.2 УСИЛИТЕЛЬНОЕ ЗВЕНО С ЗАПАЗДЫВАНИЕМ
1. Данное звено описывается следующим уравнением:
aoy(t)=bog(t-) (1)
Коэффициенты имеют следующие значения:
ao=2
bo=4
=0,1с
Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao:
y(t)= g(t-)
y(t)=kg(t-) (2),
где k=-коэффициент передачи.
Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:
y(t)=kg(t-) (3)
2. Получим передаточную функцию для идеального звена. Воспользуемся преобразованиями Лапласа:
y(t)=Y(s)
g(t-)=G(s)e-s
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
Y(s)=kG(s) e-s
W(s)= ke-s (4)
3. Найдем выражения для переходной функции и функции веса. ПО определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1.Тогда
h(t)=y(t)=k g(t-)=k1(t) (5)
Функцию веса можно получить дифференцированием переходной функции:
w(t)==k(t-) (6)
4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи и временные характеристики:
k=2
h(t)=21(t-)
w(t)=2(t-)
Переходная функция представляет собой ступенчатую функцию с шагом k=2 и запаздыванием на =0,1с, а функция веса - импульсную функцию с таким же запаздыванием, площадь которой равна k=2.
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на j:
W(s)=k e-s
W(j)=k e-j =k(cos-jsin) (7)
W(j)=U()+jV()
U()=k cos
V()=-ksin
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.
A()=W(j)
A()=k (8)
Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
()=argW(j)
()= (9)
Для построения логарифмических частотных характеристик вычислим
L()=20lg A() L()=20lgk
7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.
k=2
A()=2
()=0,1
L()=20lg2
U()=2cos0,1
V()=-2sin0,1
2.1.3 УСТОЙЧИВОЕ АПЕРИОДИЧЕСКОЕ ЗВЕНО 1-го ПОРЯДКА
1. Данное звено описывается следующим уравнением:
a1 + aoy(t) =bog(t) (1)
Коэффициенты имеют следующие значения:
a1=1,24
ao=2
bo=4
Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao:
+y(t)=g(t)
T1 +y(t)=kg(t) (2),
где k=-коэффициент передачи,
T1=-постоянная времени.
Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:
(T1 p+1)y(t)=kg(t) (3)
2. Получим передаточную функцию для апериодического звена. Воспользуемся преобразованиями Лапласа:
y(t)=Y(s)
=sY(s)
g(t)=G(s)
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
T1 sY(s)+Y(s)=kG(s)
W(s)= (4)
3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа
h(t)=H(s)
H(s)=W(s)==
Переходя к оригиналу, получим
h(t)=k1(t) (5)
Функцию веса можно получить дифференцированием переходной функции
w(t)=
или из преобразований Лапласа
w(t)=w(s)
w(s)=W(s)1
W(s)==
Переходя к оригиналу, получим
w(t)= e 1(t) (6)
4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:
k=2
T1 =0.62
h(t)=2 1(t)
w(t)=3.2e1(t)
Переходная функция представляет собой экспоненту. Множитель 1(t) указывает ,что экспонента рассматривается только для положительного времени t>0. Функция веса - также экспонента, но со скачком в точке t=0 на величину.
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на j:
W(s)=
W(j)= (7)
W(j)=U()+jV()==-j
U()=
V()=
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.
A()=W(j)
A()== (8)
Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
()=argW(j)
()=arctgk - arctg
()=-arctgT1 (9)
Для построения логарифмических частотных характеристик вычислим
L()=20lg A()
L()=20lg
7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.
k=2
T1 =0.62
A()=
()=arctg0.62
L()=20lg
U()=
V()=
2.1.4 НЕУСТОЙЧИВОЕ АПЕРИОДИЧЕСКОЕ ЗВЕНО 1-го ПОРЯДКА
1. Данное звено описывается следующим уравнением:
a1 - aoy(t) =bog(t) (1)
Коэффициенты имеют следующие значения:
a1=1,24
ao=2
bo=4
Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao:
-y(t)=g(t)
T -y(t)=kg(t) (2),
где k=-коэффициент передачи,
T=-постоянная времени.
Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:
(T p-1)y(t)=kg(t) (3)
2. Получим передаточную функцию для апериодического звена. Воспользуемся преобразованиями Лапласа:
y(t) = Y(s)
=sY(s)
g(t)=G(s)
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
T sY(s)-Y(s)=kG(s)
W(s)= (4)
3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа
h(t)=H(s)
H(s)=W(s)==
Переходя к оригиналу, получим
h(t)=k1(t) (5)
Функцию веса можно получить дифференцированием переходной функции
w(t)=
или из преобразований Лапласа
w(t)=w(s)
w(s)=W(s)1
W(s)==
Переходя к оригиналу, получим
w(t)= e 1(t) (6)
4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:
k=2
T =0.62
h(t)=2 1(t)
w(t)=3.2e1(t)
Переходная функция представляет собой экспоненту. Множитель 1(t) указывает ,что экспонента рассматривается только для положительного времени t>0. Функция веса - также экспонента, но со скачком в точке t=0 на величину.
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на j:
W(s)=
W(j)= (7)
W(j)==j=U()+jV()
U()=
V()=
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.
A()=W(j)
A()== (8)
Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
()=argW(j)
()=arctgk - arctg
()=-arctg(-T) (9)
Для построения логарифмических частотных характеристик вычислим
L()=20lg A()
L()=20lg
7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.
k=2
T =0.62
A()=
()=-arctg(-0.62)
L()=20lg
U()=
V()=
2.1.5 АПЕРИОДИЧЕСКОЕ ЗВЕНО 2-го ПОРЯДКА
1. Данное звено описывается следующим уравнением:
a2+a1 + aoy(t) =bog(t) (1)
Коэффициенты имеют следующие значения:
a2=0,588
a1=50,4
ao=120
bo=312
Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao:
++y(t)=g(t)
+T1 +y(t)=kg(t) (2),
где k=-коэффициент передачи,
T1=,T22=-постоянные времени.
Если корни характеристического уравнения для дифференциального уравнения 2-го порядка вещественны (это выполняется при T1>2T2), то оно является апериодическим 2-го порядка. Проверим это для нашего уравнения:
T1=0,42
2T2=0,14
0,42>014, следовательно, данное уравнение - апериодическое.
Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:
(p2+T1 p+1)y(t)=kg(t) (3)
2. Получим передаточную функцию для колебательного звена. Воспользуемся преобразованиями Лапласа:
y(t) = Y(s)
=sY(s)
=s2Y(s)
g(t)=G(s)
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
s2Y(s)+T1 sY(s)+Y(s)=kG(s)
W(s)= (4)
3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа
h(t)=H(s)
H(s)=W(s)== , где
T3,4=
Разложив на элементарные дроби правую часть этого выражения, получим
H(s)=
=
Переходя к оригиналу, получим
h(t)=k1(t) =
=k 1(t)(5)
Функцию веса можно получить дифференцированием переходной функции
w(t)=
или из преобразований Лапласа
w(t)=w(s)
w(s)=W(s)1==
Разложив на элементарные дроби правую часть этого выражения, получим
w(s)=
=
Переходя к оригиналу, получим
w(t)= =
= (6)
4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на j:
W(s)=
W(j)= (7)
Выделим вещественную и мнимую части :
W(j) ==
U()=
V()=
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.
A()=W(j)
A()==..............(8)
Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
()=argW(j)
()=................
()=............... (9)
Для построения логарифмических частотных характеристик вычислим
L()=20lg A()
L()=...................
7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.
2.1.6 КОЛЕБАТЕЛЬНОЕ (УСТОЙЧИВОЕ) ЗВЕНО
1. Данное звено описывается следующим уравнением:
a2+a1 + aoy(t) =bog(t) (1)
Коэффициенты имеют следующие значения:
a2=0,588
a1=0,504
ao=12
bo=31,20
Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao:
++y(t)=g(t)
+T1 +y(t)=kg(t) (2),
где k=-коэффициент передачи,
T1=,T22=-постоянные времени.
Если корни характеристического уравнения для дифференциального уравнения 2-го порядка комплексные (это выполняется при T1<2T2), то оно является колебательным. Проверим это для нашего уравнения:
T1=0,042
2T2=0,14
0,042<014, следовательно, данное уравнение - колебательное.
Представим данное уравнение в следующем виде:
пусть T2=T, .
Тогда уравнение (2):
Здесь T - постоянная времени, - декремент затухания (0<<1).
Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:
(p2+2Tp+1)y(t)=kg(t) (3)
2. Получим передаточную функцию для колебательного звена. Воспользуемся преобразованиями Лапласа:
y(t) = Y(s)
=sY(s)
=s2Y(s)
g(t)=G(s)
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
s2Y(s)+2T sY(s)+Y(s)=kG(s)
W(s)= (4)
3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа
h(t)=H(s)
H(s)=W(s)=
Разложив на элементарные дроби правую часть этого выражения, получим
H(s)==
=
Заменим в этом выражении ,.Тогда
H(s)==
=
Переходя к оригиналу, получим
h(t)=k =
=k 1(t) (5)
Функцию веса можно получить дифференцированием переходной функции
w(t)=
или из преобразований Лапласа
w(t)=w(s)
w(s)=W(s)1===
=
Переходя к оригиналу, получим
w(t)= (6)
4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на j:
W(s)=
W(j)= (7)
Выделим вещественную и мнимую части :
W(j)=
U()=
V()
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.
A()=W(j)
A()== (8)
Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
()=argW(j)
()=argk - arg(2Tj - T22+1)= - arctg
()= - arctg (9)
Для построения логарифмических частотных характеристик вычислим
L()=20lg A()
L()=20lg
7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.
2.1.6 КОЛЕБАТЕЛЬНОЕ (НЕУСТОЙЧИВОЕ) ЗВЕНО
1. Данное звено описывается следующим уравнением:
a2- a1 + aoy(t) =bog(t) (1)
Коэффициенты имеют следующие значения:
a2=0,588
a1=0,504
ao=12
bo=31,20
Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao:
- +y(t)=g(t)
-T1 +y(t)=kg(t) (2),
где k=-коэффициент передачи,
T1=,T22=-постоянные времени.
Если корни характеристического уравнения для дифференциального уравнения 2-го порядка комплексные (это выполняется при T1<2T2), то оно является колебательным. Проверим это для нашего уравнения:
T1=0,042
2T2=0,14
0,042<014, следовательно, данное уравнение - колебательное.
Представим данное уравнение в следующем виде:
пусть T2=T, .
Тогда уравнение (2):
Здесь T - постоянная времени, - декремент затухания (0<<1).
Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:
(p2 - 2Tp+1)y(t)=kg(t) (3)
2. Получим передаточную функцию для колебательного звена. Воспользуемся преобразованиями Лапласа:
y(t) = Y(s)
=sY(s)
=s2Y(s)
g(t)=G(s)
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
s2Y(s) - 2T sY(s)+Y(s)=kG(s)
W(s)= (4)
3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа
h(t)=H(s)
H(s)=W(s)=
Разложив на элементарные дроби правую часть этого выражения, получим
H(s)==
=
Заменим в этом выражении ,.Тогда
H(s)==
=
Переходя к оригиналу, получим
h(t)=k =
=k 1(t) (5)
Функцию веса можно получить дифференцированием переходной функции
w(t)=
или из преобразований Лапласа
w(t)=w(s)
w(s)=W(s)1===
=
Переходя к оригиналу, получим
w(t)= (6)
4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на j:
W(s)=
W(j)= (7)
Выделим вещественную и мнимую части :
W(j)=
U()=
V()
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.
A()=W(j)
A()== (8)
Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
()=argW(j)
()=argk - arg(1 - 2Tj - T22)= - arctg
()= - arctg (9)
Для построения логарифмических частотных характеристик вычислим
L()=20lg A()
L()=20lg
7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.
2.1.5 КОЛЕБАТЕЛЬНОЕ КОНСЕРВАТИВНОЕ ЗВЕНО
1. Данное звено описывается следующим уравнением:
a2+ aoy(t) =bog(t) (1)
Коэффициенты имеют следующие значения:
a2=0,0588
ao=12
bo=31,20
Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao:
+y(t)=g(t)
+ y(t)=kg(t) (2),
где k=-коэффициент передачи,
T2=-постоянная времени.
Это уравнение является частным случаем колебательного уравнения при =0.
Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:
(T2p2+1)y(t)=kg(t) (3)
2. Получим передаточную функцию для колебательного звена. Воспользуемся преобразованиями Лапласа:
y(t) = Y(s)
=s2Y(s)
g(t)=G(s)
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
T2s2Y(s)+Y(s)=kG(s)
W(s)= (4)
3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа
h(t)=H(s)
H(s)=W(s)=
Разложив на элементарные дроби правую часть этого выражения, получим
H(s)=
Заменим .Тогда
H(s)=
Переходя к оригиналу, получим
h(t)=k1(t) (5)
Функцию веса можно получить из преобразований Лапласа
w(t)=w(s)
w(s)=W(s)1===
Переходя к оригиналу, получим
w(t)= k0sin0t1(t) (6)
4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на j:
W(s)=
W(j)= (7)
U()=
V()=0
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.
A()=W(j)
A()==(8)
Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
()=argW(j)
()=argk - arg(1-T22)=0 (9)
Для построения логарифмических частотных характеристик вычислим
L()=20lg A()
L()=20lg (10)
7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.
2.2 ИНТЕГРИРУЮЩИЕ ЗВЕНЬЯ
2.2.1 ИНТЕГРИРУЮЩЕЕ ИДЕАЛЬНОЕ ЗВЕНО
1. Данное звено описывается следующим уравнением:
a1 =bog(t) (1)
Коэффициенты имеют следующие значения:
a1=1,24
bo=4
Запишем это уравнение в стандартной форме. Для этого разделим (1) на a1:
=g(t)
=kg(t) (2),
где k=-коэффициент передачи.
Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:
py(t)=kg(t) (3)
2. Получим передаточную функцию для данного звена. Воспользуемся преобразованиями Лапласа:
y(t)=Y(s)
=sY(s)
g(t)=G(s)
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
sY(s)=kG(s)
W(s)= (4)
3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа
h(t)=H(s)
H(s)=W(s)=
Переходя к оригиналу, получим
h(t)=kt1(t) (5)
Функцию веса можно получить дифференцированием переходной функции
w(t)=
w(t)==k1(t) (6)
4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на j:
W(s)=
W(j)= (7)
W(j)=
U()=0
V()=
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.
A()=W(j)
A()== (8)
Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
()=argW(j)
()=argk - argj
()= - arctg (9)
Для построения логарифмических частотных характеристик вычислим
L()=20lg A()
L()=20lg
7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.
2.2.2 ИНТЕГРИРУЮЩЕЕ ИНЕРЦИОННОЕ ЗВЕНО
1. Данное звено описывается следующим уравнением:
+ a1 =bog(t) (1)
Коэффициенты имеют следующие значения:
a2=0,0588
a1=0,504
bo=31,20
Запишем это уравнение в стандартной форме. Для этого разделим (1) на a1:
+ =g(t)
T+=kg(t) (2),
где k=-коэффициент передачи,
T=-постоянная времени.
Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:
(Tp2+p)y(t)=kg(t) (3)
2. Получим передаточную функцию для апериодического звена. Воспользуемся преобразованиями Лапласа:
y(t)=Y(s)
=sY(s)
=s2Y(s)
g(t)=G(s)
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
Ts2Y(s)+sY(s)=kG(s)
W(s)= (4)
3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа
h(t)=H(s)
H(s)=W(s)=
Разложив на элементарные дроби правую часть этого выражения, получим
H(s)=
Переходя к оригиналу, получим
h(t)= - kT1(t)+kt1(t)+kT1(t)=
= (5)
Функцию веса можно получить из преобразований Лапласа
w(t)=w(s)
w(s)=W(s)1=
Разложив на элементарные дроби правую часть этого выражения, получим
w(s)=
Переходя к оригиналу, получим
w(t)=k1(t) (6)
4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на j:
W(s)=
W(j)= (7)
W(j)
U()=
V()=
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.
A()=W(j)
A()== (8)
Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
()=argW(j)
()=argk - argj - arg
()= - arctg - arctgT (9)
Для построения логарифмических частотных характеристик вычислим
L()=20lg A()
L()=20lg
7. Построим графики частотных характеристик.Для этого сначала получим их численные значения.
2.2.3 ИЗОДРОМНОЕ ЗВЕНО
1. Данное звено описывается следующим уравнением:
a1 =b1+bog(t) (1)
Коэффициенты имеют следующие значения:
a1=1,24
bo=4
b1=4
Запишем это уравнение в стандартной форме. Для этого разделим (1) на a1:
=+g(t)
=k1+kg(t) (2),
где k1=, k=-коэффициент передачи.
Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:
py(t)=(k1p+k)g(t) (3)
уравнение дифференциальный функция звено
2. Получим передаточную функцию для апериодического звена. Воспользуемся преобразованиями Лапласа:
y(t)=Y(s)
=sY(s)
g(t)=G(s)
=sG(t)
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
sY(s)=k1sG(s)+kG(s)
W(s)= (4)
3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа
h(t)=H(s)
H(s)=W(s) =
Переходя к оригиналу, получим
h(t)= 1(t) (5)
Функцию веса можно получить из преобразований Лапласа
w(t)=w(s)
w(s)=W(s)1
W(s)=
Переходя к оригиналу, получим
w(t)= k1(t)+k1(t) (6)
4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на j:
W(s)=
W(j)= (7)
U()=k1
V()=
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.
A()=W(j)
A()=............(8)
Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
()=argW(j)
()=............
()=............ (9)
Для построения логарифмических частотных характеристик вычислим
L()=20lg A()
L()=20lg........
7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.
2.3 ДИФФЕРЕНЦИРУЮЩЕЕ ИДЕАЛЬНОЕ ЗВЕНО
1. Данное звено описывается следующим уравнением:
aoy(t)=b1 (1)
Коэффициенты имеют следующие значения:
ao=2
b1=4
Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao:
y(t)=
y(t)=k (2),
где k=-коэффициент передачи.
Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:
y(t)=kpg(t) (3)
2. Получим передаточную функцию для идеального звена. Воспользуемся преобразованиями Лапласа:
y(t)=Y(s)
g(t)=G(s)
=sG(s)
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
Y(s)=ksG(s)
W(s)=ks (4)
3. Найдем выражения для переходной функции и функции веса из преобразований Лапласа, т.е.
h(t)=H(s)
H(s)=W(s)=k
Переходя к оригиналу, получим
h(t)=k(t) (5)
Функцию веса можно получить по преобразованию Лапласа из передаточной функции:
w(t)=w(s)
w(s)=W(s)1=ks
Переходя к оригиналу, получим
w(t)=k (6)
4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи и временные характеристики:
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на j:
W(s)=ks
W(j)=jk (7)
W(j)=U()+jV()
U()=0
V()=k
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.
A()=W(j)
A()=k (8)
Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
()=argW(j)
()=arctgk (9)
Для построения логарифмических частотных характеристик вычислим
L()=20lg A()
L()=20lgk
7. Построим графики частотных характеристик. Для этого сначала получим их численные выражения.
2.3.1 ДИФФЕРЕНЦИРУЮЩЕЕ РЕАЛЬНОЕ ЗВЕНО
1. Данное звено описывается следующим уравнением:
a1 + aoy(t) =b1 (1)
Коэффициенты имеют следующие значения:
a1=1,24
ao=2
b1=4
Запишем это уравнение в стандартной форме. Для этого разделим (1) на a1:
+y(t)=
T+y(t)=k (2),
где k=-коэффициент передачи,
T1=-постоянная времени.
Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:
(Tp+1)y(t)=kpg(t) (3)
2. Получим передаточную функцию для апериодического звена. Воспользуемся преобразованиями Лапласа:
y(t)=Y(s)
=sY(s)
g(t)=G(s)
=sG(s)
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
TsY(s)+Y(s)=ksG(s)
W(s)= (4)
3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа
h(t)=H(s)
H(s)=W(s)==
Переходя к оригиналу, получим
h(t)=1(t) (5)
Функцию веса можно получить из преобразований Лапласа
w(t)=w(s)
w(s)=W(s)1
W(s)= =
Переходя к оригиналу, получим
w(t)=(t) e 1(t) (6)
4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на j:
W(s)=
W(j)=
W(j)==
6.Найдем АЧХ:
A()=W(j)
A()==
Найдем ФЧХ:
()=argW(j)
()=arctgk-arctgT
L()=20lgA()
L()=20lg
2.3.2 ФОРСИРУЮЩЕЕ ЗВЕНО 1-го ПОРЯДКА
Данное звено описывается следующим уравнением:
a0y(t)=b1+b0g(t)
y(t)=+g(t)
k1=
k=
p=
y(t)=k1pg(t)+kg(t)
y(t)=Y(s)
g(t)=G(s)
Y(s)=k1sG(s)+kG(s)
W(s)=k1s+k
H(s)==k1+
h(t)=k1(t)+k1(t)
W(j)=k1j+k
U()=k
V()=k1
A()=W(j)
A()=
()=argW(j)
()=arctg
L()=20lgA()
L()=20lg
2.3.3 ФОРСИРУЮЩЕЕ ЗВЕНО 2-го ПОРЯДКА
a0y(t)=b2+b1+b0g(t)
y(t)=++g(t)
y(t)=k2+k1+kg(t)
y(t)=k2p2g(t)+k1pg(t)+kg(t)
Y(s)=(k2s2+k1s+k)G(s)
W(s)=k2s2+k1s+k
H(s)=k2s+k1+
h(t)=k2+k1(t)+k11(t)
w(s)=W(s)=k2s2+k1s+k
w(t)=k2+k1+k(t)
W(j)=k1j+k - k22
U()=k - k22
V()=k1j
A()=
()=arctg
L()=20lg
Размещено на Allbest.ru
Подобные документы
Статическая характеристика элемента. Выполнение аналитической линеаризации заданной функции в определенной точке. Обратное превращение Лапласа заданной передаточной функции ОАУ. Преобразование дифференциального уравнения к нормальной форме Коши.
контрольная работа [564,9 K], добавлен 30.03.2015Дифференциальные уравнения Риккати. Общее решение линейного уравнения. Нахождение всех возможных решений дифференциального уравнения Бернулли. Решение уравнений с разделяющимися переменными. Общее и особое решения дифференциального уравнения Клеро.
курсовая работа [347,1 K], добавлен 26.01.2015Установление прямой зависимости между величинами при изучении явлений природы. Свойства дифференциальных уравнений. Уравнения высших порядков, приводящиеся к квадратурам. Линейные однородные дифференциальные уравнения с постоянными коэффициентами.
курсовая работа [209,4 K], добавлен 04.01.2016Задачи Коши для дифференциальных уравнений. График решения дифференциального уравнения I порядка. Уравнения с разделяющимися переменными и приводящиеся к однородному. Однородные и неоднородные линейные уравнения первого порядка. Уравнение Бернулли.
лекция [520,6 K], добавлен 18.08.2012Понятия и решения простейших дифференциальных уравнений и дифференциальных уравнений произвольного порядка, в том числе с постоянными аналитическими коэффициентами. Системы линейных уравнений. Асимптотическое поведение решений некоторых линейных систем.
дипломная работа [395,4 K], добавлен 10.06.2010Дифференциальные уравнения как математический инструмент моделирования и анализа разнообразных явлений и процессов в науке и технике. Описание математических методов решения систем дифференциальных уравнений. Методы расчета токов на участках цепи.
курсовая работа [337,3 K], добавлен 19.09.2011Существование и единственность решений дифференциальных уравнений. Геометрическая интерпретация решений. Линейные и нелинейные системы. Дифференциальные уравнения, моделирующие динамику популяций конкурирующих видов, их решения и фазовые портреты.
дипломная работа [2,5 M], добавлен 27.06.2012Порядок и процедура поиска решения дифференциального уравнения. Теорема существования и единственности решения задачи Коши. Задачи, приводящие к дифференциальным уравнениям. Дифференциальные уравнения первого порядка, с разделяющими переменными.
лекция [744,1 K], добавлен 24.11.2010Общий интеграл уравнения, применение метода Лагранжа для решения неоднородного линейного уравнения с неизвестной функцией. Решение дифференциального уравнения в параметрической форме. Условие Эйлера, уравнение первого порядка в полных дифференциалах.
контрольная работа [94,3 K], добавлен 02.11.2011Решение дифференциальных уравнений с разделяющимися переменными, однородных, линейных уравнений первого порядка и уравнений допускающего понижение порядка. Введение функций в решение уравнений. Интегрирование заданных линейных неоднородных уравнений.
контрольная работа [92,7 K], добавлен 09.02.2012