Задачи по курсу начертательной геометрии

Практические задачи на определение функции пользователя и вычисление ее значения для различных значений аргумента. Табулирование функции на заданном промежутке и её декартовый график. Решение нелинейного уравнения различными методами и исследование СЛАУ.

Рубрика Математика
Вид практическая работа
Язык русский
Дата добавления 17.04.2011
Размер файла 513,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Задание № 1

Определите функцию пользователя и вычислите ее значения для различных значений аргумента. Протабулировать функцию на заданном промежутке и построить её декартовый график.

Решение

Задание № 2
В полярной системе координат для трёх значений параметра А построить график функции. Протабулировать функцию с шагом при
Решение
Задание № 3
Изобразите график и линии уровня функции в указанной прямоугольной области. Исследуйте поведение функции в заданной области, укажите приближенно координаты локальных экстремумов. Рассмотрите функцию в квадрате -a<X<a, -a<Y<a.
k=2, m=0, A=3, B=4, a=6
Решение
Задание № 4

Решить нелинейное уравнение различными методами:

а) метод SOLVE;

б) метод ROOT;

Выполнить проверку корней уравнения графически и подстановкой корней в исходное уравнение.

Решение

Задание № 5

Решите систему нелинейных уравнений. Выполнить проверку корней уравнения графически.

Решение

Задание № 6

Исследовать СЛАУ. Если решение существует, то решить различными методами:

a) по формулам Крамера;

b) по методу Гаусса;

c) методом обратной матрицы;

d) методом GIVEN - FIND;

e) при помощи встроенной функции LSOLVE.

Сделать проверку.

Решение

a)

b)

функция аргумент табулирование декартовый уравнение

c)

d)

e)

Размещено на Allbest.ru


Подобные документы

  • Определение длины стороны треугольника, нахождение координаты вектора в заданном трехмерном базисе, решение системы уравнений с помощью обратной матрицы, вычисление предельных значений, исследование функции методами дифференциального исчисления.

    контрольная работа [1,1 M], добавлен 04.05.2010

  • Понятие начертательной геометрии, ее сущность и особенности, предмет и методы изучения, история зарождения и развития. Цели и задачи начертательной геометрии, ее структура и элементы. Прямая и варианты ее расположения, разновидности и методы определения

    лекция [451,3 K], добавлен 21.02.2009

  • Исследование методами математического анализа поведения функций при заданных значениях аргумента. Этапы решения уравнения функции и определения значения аргумента и параметра. Построение графиков. Сочетание тригонометрических, гиперболических функций.

    контрольная работа [272,3 K], добавлен 20.08.2010

  • Решение первой задачи, уравнения Пуассона, функция Грина. Краевые задачи для уравнения Лапласа. Постановка краевых задач. Функции Грина для задачи Дирихле: трехмерный и двумерный случай. Решение задачи Неймана с помощью функции Грина, реализация на ЭВМ.

    курсовая работа [132,2 K], добавлен 25.11.2011

  • Решение системы трех уравнений с тремя неизвестными при помощи определителей. Исследование системы на совместность, составление канонического уравнения эллипса. Изучение функции методами дифференциального исчисления, поиск точки разрыва функции.

    контрольная работа [1,1 M], добавлен 16.04.2010

  • Банаховы функциональные пространства. Постановка краевой задачи и исследование ее однозначной разрешимости и отрицательности функции Грина. Признаки существования решения краевой задачи для нелинейного функционально-дифференциального уравнения.

    курсовая работа [440,4 K], добавлен 27.05.2015

  • Построение графика непрерывной функции. Определение множителя Лагранжа. Критические точки - значения аргумента из области определения функции, при которых производная функции обращается в нуль. Наибольшее и наименьшее значения функции на отрезке.

    контрольная работа [295,5 K], добавлен 24.03.2009

  • Вычисление производной функции и ее критических точек. Определение знака производной на каждом из интервалов методом частных значений. Нахождение промежутков монотонности и экстремумов функции. Разложение подынтегральной функции на простейшие дроби.

    контрольная работа [134,7 K], добавлен 09.04.2015

  • Последовательность решения линейной краевой задачи. Особенности метода прогонки. Алгоритм метода конечных разностей: построение сетки в заданной области, замена дифференциального оператора. Решение СЛАУ методом Гаусса, конечно-разностные уравнения.

    контрольная работа [366,5 K], добавлен 28.07.2013

  • Нахождение области определения, области значений функции, построение ее графиков с помощью преобразований кривых. График линейной функции с областью значений - все положительные действительные числа. Исследование функции на непрерывность. Расчет предела.

    контрольная работа [922,4 K], добавлен 13.12.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.