История развития математики

Понятие и содержание числа, этапы его эволюции. Вычислительная техника вавилонян и египтян, их отличия. Пифагор и его школа, учения о числе. Периоды развития математики. Системы счисления в Древней Греции. Способ наименования больших чисел Архимеда.

Рубрика Математика
Вид шпаргалка
Язык русский
Дата добавления 22.01.2011
Размер файла 32,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Возникновение понятия числа

Что появилось первым понятие числа или счёт? Очевидно, что понятие числа кристаллизовались на основе и в процессе развития счёта

Можно выделить четыре этапа этой эволюции: 1. установление соответствий предметов; 2. выработка естественных эталонов счёта; 3. выработка эталона-множества символизирующего некое конкретно число (где, впервые возникает понятие числа); 4. выработка наиболее удобных счётных систем.

Рассмотрим эту эволюцию подробно

Итак, первым этапом к возникновению счёта было установление «взаимно однозначного соответствия» между считаемыми предметами и некоторым другим множеством. Счёт строился на однозначных соответствиях; «у некоторых южноафриканских племен при счёте дотрагиваются до каждого предмета по очереди пальцами, начиная с мизинца левой руки» У первобытного человека не было потребности в счёте больших количеств. Поэтому счет доходил до 2 или до 3 - всё превышающее этот рубеж, первобытному человеку представлялось как «много». Числительное «два» имело качественное происхождение - пара рук, ног, глаз и пр.

второй этап эволюции - в процессе развития обмена - появились естественные эталоны счёта: пять пальцев руки, камешки, ракушки и пр. Судя по всему, зачастую «первобытные исчисления» ассоциировались и назывались в соответствии со сравнимыми «естественными множествами» (при помощи «конкретных» чисел). Лучший пример сказанного: древнеиндийская система счисления, где Луна - единица, два - близнецы или глаза, пять - чувства, шесть - запахи, семь - горы, восемь - боги и т.д.

Постепенно для счёта предметов стала применяться более или менее однородные предметы (пальцы рук, если их не хватало, в ход шли ноги). «Так, у индейцев племени абипонов число 5 называется «рука», 10 - «две руки», 20 - «руки и ноги»; в названии 4 - «пальцы страуса» - отражена более ранняя степень счёта. У зулусов каждый палец обозначал определенное число; например, слово «татизитуна» (буквально - «взять большой палец руки») обозначало 6, а «у комбиле», т.е. «он указал», - 7 и т.д.»

На третьем этапе появление множества эталона счёта, «символизирующего какое-нибудь конкретное число, привело к возникновению понятия числа» С развитием хозяйства возникла потребность в расширении пространства счета. При возникновении потребности в расширении числовой области низшие числительные, зачастую, просто повторялись. Однако необходимость счета больших количеств выявил неспособность прежнего способа счета (когда низшие числительные повторяются) справится с этой задачей. «Высшим числам даются особые названия, возникают высшие числительные». Крайние числительные теперь простираются гораздо дальше 10 и даже 20. За крайним числом по-прежнему простирается неопределенное «много». (Интересно, что у русских названия «пыль», «звезды», «тьма» были равнозначны понятию «много»). Серьёзную потребность в выработке количественных исчислений и оценок вызвал зарождающийся обмен между родами и племенами.

Вычислительная техника вавилонян

Для умножения применялся громоздкий комплект таблиц, отдельно для умножения на 1-20, 30…50. Деление m/n они заменяли умножением m ?(1/n), а для нахождения 1/n у них были специальные таблицы. Другие таблицы помогали возводить в степень, извлекать корни и даже находить показатель степени n, если дано число вида 2n (эти двоичные логарифмы использовались для подсчёта процентов по кредиту. Без многопудовой библиотеки таблиц никакие расчёты в Вавилоне были невозможны. Для вычисления квадратных корней вавилоняне изобрели итерационный процесс: новое приближение получалось из предыдущего по формуле метода Ньютона [3]:

an + 1 = (an + N / an) / 2

Пифагор и его школа

Школа была основана Пифагором в Кротоне (Южная Италия) и просуществовала до начала IV в. до н.э., хотя гонения на нее начались практически сразу после смерти Пифагора в 500 г. По сути, это была первая философская школа, религиозно-философское аристократическое братство; она имела большое влияние на греческие полисы Южной Италии и Сицилии. Союз отличался строгими обычаями и высокой нравственностью. Образ жизни пифагорейцев вошел в историю: как рассказывают легенды, учеников Школы всегда можно было узнать по их внешнему облику и благородному поведению. Однако и облик, и поведение были лишь следствием взглядов философов на человеческую душу и ее бессмертие, подразумевавших в здешней, земной жизни определенное воспитание. В этом они последователям учения, проповедывавшего чистейшую нравственность и суровый аскетизм; основателем его считается легендарный Орфей. Согласно этим воззрениям, душа человека проходит в своем развитии несколько этапов, в частности ряд воплощений на физическом плане, смысл которых - приобретение внутреннего опыта, достижение катарсиса, очищения от наследия ранних этапов развития. Этому служили нравственные принципы, которым следовали пифагорейцы: «Быть всегда в словах и поступках стремись справедливым», «Пусть - что важнее всего Пифагорейская школа положила начало математическим наукам. Числа понимались как суть всего существующего, им придавался мистический смысл. Основу пифагорейской математики составляет учение о декаде: 1+2+3+4=10. Эти четыре числа описывают все процессы, происходящие в мире. В частности, декада отображает законы музыкальной гармонии: через нее выражаются основные музыкальные интервалы - октава (2:1), квинта (3:2), кварта (4:3). Математический метод в современной науке в этом смысле является следствием популяризации пифагорейского учения. Пифагорейцам принадлежит учение о музыке сфер и о музыкальном звукоряде, отражающем гармонию Солнечной системы, где каждой планете соответствует определенная нота, а все вместе они создают интервалы музыкальной гаммы. Ими же положено и начало музыкальной психологии: музыка использовалась как средство воспитания и исцеления души и тела. В пифагорейской школе начали развиваться астрономия и медицина. Ею создано множество аллегорических комментариев Гомера, а также грамматика греческого языка. Таким образом, пифагорейцев можно считать родоначальниками гуманитарной, естественной, точной и систематической наук.

Четыре периода развития математики

С точки зрения выдающегося советского математика академика Андрея Николаевича Колмогорова, история развития математического знания распадается на четыре этапа: период зарождения математики (примерно до VI-V вв. до н.э.), на протяжении которого был накоплен достаточно большой фактический материал; период элементарной математики, начинающийся в VI-V вв. до н.э. и завершающийся в конце XVI в. период математики переменных величин, «который можно условно назвать также периодом «высшей математики»; период современной математики - математики XIX-XXI вв

1. Зарождение математики. Уже на самых ранних ступенях развития цивилизации необходимость счета общеупотребимых предметов привела к созданию простейших понятий арифметики натуральных чисел. Затем постепенно вырабатываются приемы выполнения простейших арифметических действий над натуральными числами, возникают системы счисления. Потребности измерения количества зерна, длины дороги и т.п. приводят к появлению названий и обозначений простейших дробных чисел и к разработке приемов выполнения вычислительных действий над дробями. Таким образом, накапливается материал, складывающийся постепенно в древнейшую математическую науку - арифметику. Измерение площадей и объемов, потребности строительной техники, а несколько позднее - астрономии, вызывают развитие начал геометрии. Зачатки математических знаний обнаруживаются уже примерно за 4 тыс. лет до н.э. Об этом свидетельствуют дошедшие до нас египетские папирусы, клинописные вавилонские таблички, где встречаются решения различных арифметических, алгебраических и геометрических задач. Геометрия сводилась к правилам вычисления площадей и объёмов. Правильно вычислялись площади треугольника и трапеции, объёмы параллелепипеда и пирамиды с квадратным основанием. Наивысшим известным нам достижением египтян в этом направлении явилось открытие способа вычисления объёма усечённой пирамиды с квадратным основанием. 2. Период элементарной математики. Появляются первые попытки анализа роли и значения математики в научном познании. Так, например, пифагорейцы считали число основой и началом всего существующего. Они полагали, что задача научного познания состоит в нахождении в вещах внешнего мира закономерностей, присущих числам. На позициях математизации действительности стоял также греческий философ Платон. По его мнению, математические формы являются строительными кирпичиками Вселенной. 3. Период создания математики переменных величин. С XVII в. начинается существенно новый период развития математики, обусловленный явным введением в математику идей движения и изменения. Зависимости между величинами становятся самостоятельным объектом изучения. На первый план выдвигается понятие функции. Крупным шагом в создании математики переменных величин был выход в свет книги Р. Декарта «Геометрия». Во второй половине XVII в. Ньютоном и Лейбницем создается анализ бесконечно малых в виде дифференциального и интегрального исчислений, позволяющий связывать конечные изменения переменных величин с их поведением в непосредственной близости отдельных принимаемых ими значений. 4. Современная математика. Период математических структур, характеризуется глубоким развитием математической логики. В центре находятся: 1. Алгебраические структуры (кольцо, поле, векторное пространство, группа). 2. Структуры порядка (предполагают аксиоматизацию интуитивного понятия сравнения по величине) 3. Топологические структуры (аксиоматизация интуитивного понятия (окрестность, предел, непрерывность)

Системы счисления в Древней Греции

В Древней Греции имели хождение две основных системы счисления - аттическая и ионическая. Аттическая система счисления использовалась греками, по-видимому, уже к 5 в. до н.э. По существу это была десятичная система (хотя в ней также было выделено и число пять), а аттические обозначения чисел использовали повторы коллективных символов. Черта, обозначавшая единицу, повторенная нужное число раз, означала числа до четырех. После четырех черт греки вместо пяти черт ввели новый символ Г, первую букву слова «пента» (пять) (буква Г употреблялась для обозначения звука «п», а не «г»). Дойдя до десяти, они ввели еще один новый символ ?, первую букву слова «дека» (десять). Так как система была десятичной, грекам потребовались новые символы для каждой новой степени числа 10: символ H означал 100 (гекатон), X - 1000 (хилиои), символ M - 10000 (мириои или мириада). Используя число 5 как промежуточное подоснование системы счисления, греки на основе принципа умножения комбинировали пятерку с символами степеней числа 10. Вторая принятая в Древней Греции ионическая система счисления - алфавитная - получила широкое распространение в начале Александрийской эпохи, хотя возникнуть она могла несколькими столетиями раньше, по всей видимости, уже у пифагорейцев. Эта более тонкая система счисления была чисто десятичной, и числа в ней обозначались примерно так же, как в древнеегипетской иератической системе. Используя двадцать четыре буквы греческого алфавита и, кроме того, еще три архаических знака, ионическая система сопоставила девять букв первым девяти числам; другие девять букв - первым девяти целым кратным числа десять; и последние девять символов - первым девяти целым кратным числа 100. Для обозначения первых девяти целых кратных числа 1000 греки частично воспользовались древневавилонским принципом позиционности, снова использовав первые девять букв греческого алфавита, снабдив их штрихами слева. Чтобы отличить числа от слов, греки над соответствующей буквой ставили горизонтальную черту. Первоначально числа обозначались прописными буквами, но позднее сменились на строчные. Поскольку греки работали с обыкновенными дробями лишь эпизодически, они использовали различные обозначения. Герон и Диофант, самые известные арифметики среди древнегреческих математиков, записывали дроби в алфавитной форме, причем числитель располагали под знаменателем. Но в принципе предпочтение отдавалось либо дробям с единичным числителем, либо шестидесятиричным дробям. Недостатки греческих обозначений дробных чисел, включая использование шестидесятиричных дробей в десятичной системе счисления, объяснялись отнюдь не пороками основополагающих принципов. Недостатки греческой системы счисления можно отнести скорее за счет их упорного стремления к строгости, которое заметно увеличило трудности, связанные с анализом отношения несоизмеримых величин. Слово «число» греки понимали как набор единиц, поэтому то, что мы теперь рассматриваем как единое рациональное число - дробь, - греки понимали как отношение двух целых чисел. Именно этим объясняется, почему обыкновенные дроби редко встречались в греческой арифметике. Кроме того, десятичные представления обыкновенных дробей в большинстве случаев бесконечны. А поскольку бесконечность была исключена из строгих рассуждений, теоретическая арифметика не нуждалась в такого рода представлениях. С другой стороны, областью, в которой практические вычисления испытывали величайшую потребность в точных дробях, была астрономия, а здесь вавилонская традиция сильна, что шестидесятиричная система обозначений угловых, дуговых и временных величин сохраняется и поныне.

Учения о числе в школе Пифагора

Как известно, Пифагор утверждал, что людей окружают разные предметы. Но все их многообразие не может не иметь под собой единой мировой основы. Безусловно, все вещи можно посчитать. Всегда можно сказать: две птицы, десять рыб, двадцать деревьев, проще говоря, эти слова сочетаются с количественными числительными. Таким образом, с помощью числа можно выразить многообразие, что нас окружает. Число неизменно и присутствует в совершенно разных вещах, являясь единой основой. Поэтому число можно считать первоначалом мира.

Главное число - единица. Это объясняется тем, что любое другое число по своей сущности является их сочетанием. Как число порождает все многообразие предметов в нашем мире? Пифагор говорил, что единице соответствует точка, двойке - две точки, но через две точки уже можно провести прямую, получается, что числу два соответствует прямая; тройке - три точки, но если их соединить, то получается уже плоскость; через четыре точки строится пространство, которое, соответствует четверке. Оно делится на четыре стихии: воду, землю, воздух и огонь, а затем каждая из них делится на разные предметы, взаимодействующий между собой. Это взаимодействие и приводит к бесконечному разнообразию вещей.

Отсюда наглядно видна обратная цепочка, по которой все возвращается к единице: как понятно из выше написанного, многообразие сводится к четырем стихиям, четыре стихии сводятся к пространству, которое сводится к плоскости, не трудно догадаться, что плоскость сводиться к прямой, а она к точке, которая, и является единицей. Отсюда и получается, что весь естественный мир построен из чисел. Возникает соответствие между пространственным миром и числами: линия - «2», плоскость - «3», тело - «4». К числу сводится и мир духа: любовь и дружба отождествляются с восьмеркой, справедливость - с кратными числами. Таким образом, весь мир представляет собой последовательное разворачивание идеальной сущности - числа. Пифагор считал, что познать мир - это значит познать управляющие им числа. В каждом числе Пифагор определял тот или иной принцип, закон, ту или иную активную силу. Противоположность между нечетными (высшими) и четными (низшими, порожденными из высших путем удвоения) числами проявляется в природе в виде ряда других противоположностей: свет и тьма, безграничное и ограниченное, доброе и злое, движущееся и покоящееся, мужское и женское и т.д. Особую важность Пифагор придавал числам «7» и «10». Состоящая из трех и четырех, семь означает соединения человека с божеством, т.е. 4 олицетворяет человека, как тело, а 3 обозначает божество, как один из трех миров. Число десять, образованное из первых четырех чисел - 1+2+3+4 - совершенное число, единица высшего порядка, ибо выражает собой все начала Божества, сначала развивавшегося, а затем слившегося в новом единстве.

Система счисления и вычислительная техника египтян

Расшифровка системы счисления, созданной в Египте во времена первой династии (ок. 2850 до н.э.), была существенно облегчена тем, что иероглифические надписи древних египтян были аккуратно вырезаны на каменных монументах. Из этих надписей нам известно, что древние египтяне использовали только десятичную систему счисления. Единицу обозначали одной вертикальной чертой, а для обозначения чисел, меньших 10, нужно было поставить соответствующее число вертикальных штрихов. Чтобы записанные таким образом числа было легко узнавать, вертикальные штрихи иногда объединялись в группы из трех или четырех черт. Для обозначения числа 10, основания системы, египтяне вместо десяти вертикальных черт ввели новый коллективный символ, напоминающий по своим очертаниям подкову или крокетную дужку. Множество из десяти подковообразных символов, т.е. число 100, они заменили другим новым символом, напоминающим веревку для обмера полей; десять веревок, т.е. число 1000, египтяне обозначили стилизованным изображением лотоса. Продолжая в том же духе, египтяне обозначили десять лотосов согнутым пальцем, десять согнутых пальцев - волнистой линией и десять волнистых линий - фигуркой удивленного человека. В итоге древние египтяне могли представлять числа до миллиона. Самые древние из дошедших до нас математических записей высечены на камне, но наиболее важные свидетельства древнеегипетской математической деятельности запечатлены на гораздо более хрупком и недолговечном материале - папирусе. Два таких документа - папирус Райнда, (ок. 1650 до н.э.) и московский папирус, (ок. 1850 до н.э.) - служат для нас основными источниками сведений о древнеегипетских арифметике и геометрии. Однако их операции с дробями продолжали оставаться на примитивном уровне, так как они знали лишь аликвотные дроби (т.е. дроби с числителем 1) и каждую дробь записывали в виде суммы аликвотных дробей, например, дробь 2/43 они записали бы так: 1/42 + 1/86 + 1/129 + 1/301. В этих системах счисления над символом, обозначающим знаменатель, ставился специальный знак.

Архимед и его способ наименования сколь угодно больших чисел

число математика счисление наименование

Великий математик, механик и инженер древности Архимед (III в. до н.э.) посвятил целое сочинение тому, чтобы дать общий прием наименования сколь угодно больших чисел. Издавна у греков, как, впрочем, и у других народов, наглядным образом для представления об очень большом и даже неисчислимом коли­честве служило число песчинок. В народных сказках, например, встречается «неразрешимая» задача: сосчитать звезды на небе, капли в море или песчинки на земле. Архимед показал, что такие можно решить. Свое сочинение он так и назвал «Исчисление песка» («Псаммит»). В нем он построил систему счета, в которой имелись числа, не только превосходящие количество песчинок в его родной Сицилии, но и такие, которые больше числа песчинок во Вселенной, если даже считать, что Вселенная сплошь заполнена песком. Но что же понимали греки времен Архимеда под всей Вселенной? В своем сочинении Архимед, следуя за греческим астрономом Аристархом Самосским, полагал, что в центре Вселенной находится Солнце, а Земля и другие планеты вращаются вокруг него. Вселенная имеет форму сферы, на поверхности которой расположены неподвижные звезды. Это была первая гелиоцентрическая система мира. Для подсчета количества песчинок Архимед должен был, хотя бы приблизительно, определить размеры диаметров Вселенной и песчинки, а затем найти отношение их объемов. Архимед сделал это, опираясь на данные астрономии своего времени и на собственные исследования в этой области. Число песчинок, которое должно было у него при этом получиться, в нашей нумерации записывается так: 1063. Это очень большое число, и до Архимеда не было средств ни для записи, ни для наименования чисел такого порядка.

Чтобы решить поставленную задачу, Архимед поступает следующим образом: все числа, меньшие мириады мириад, т.е. все числа от 1 до 108-1, он объединяет в первую октаду (т.е. восьмерицу) и называет их «первыми числами». Число 108служит единицей второй октады, в которую входят все числа от 108до 102*8-1. Это - «вторые числа». Аналогично этому число 102*8является единицей третьей октады, а числа от 102*8до 103*8-1 являются «третьими». Продолжая это построение, можно дойти до мириадо-мириадной октады, которая содержит числа от 10(108-1)*8 до 108*108-1. Все эти октады Архимед объединяет в первый период. Число 108*108 служит единицей первой октады второго периода и т.д. Этим способом можно дойти до последнего числа последней октады мириадо-мириадного периода. Здесь Архимед останавливается, но ясно, что с помощью его способа можно двигаться и дальше, объединив все периоды в какой-нибудь новый разряд. Но и тех чисел, которые построил Архимед, вполне достаточно для подсчета числа песчинок во Вселенной. Необходимое число содержится уже в восьмой октаде первого периода. Архимед продолжил свое построение дальше для того, чтобы разъяснить метод наименования сколь угодно больших чисел.

Способ Архимеда близок к позиционному, но понадобилось еще около тысячи лет, прежде чем человечеству удалось создать десятичную позиционную систему счисления.

Геометрия древних египтян (Планиметрия)

Если не учитывать весьма скромный вклад древних обитателей долины между Тигром и Евфратом и Малой Азии, то геометрия зародилась в Древнем Египте до 1700 до н.э. Во время сезона тропических дождей Нил пополнял свои запасы воды и разливался. Вода покрывала участки обработанной земли, и в целях налогообложения нужно было установить, сколько земли потеряно. Землемеры использовали в качестве измерительного инструмента туго натянутую веревку. Еще одним стимулом накопления геометрических знаний египтянами стали такие виды их деятельности, как возведение пирамид и изобразительное искусство. Основным источником наших знаний о древнеегипетской геометрии является относящийся примерно к 1700 до н.э. папирус Ринда, Папирус Ринда свидетельствует о том, что древних египтян интересовали главным образом практические аспекты геометрии и что при накоплении геометрических фактов египтяне почти всецело руководствовались интуицией, экспериментом и приближенными представлениями. В области геометрии египтяне знали точные формулы для площади прямоугольника, треугольника, трапеции и сферы, могли высчитывать объемы параллелепипеда, цилиндра и пирамид. Площадь произвольного четырёхугольника со сторонами a, b, c, d вычислялась приближённо как эта грубая формула даёт приемлемую точность, если фигура близка к прямоугольнику. Египтяне предполагали, что (погрешность менее 1%).Формула площади круга с диаметром d имела вид: 4. Система счисления вавилонян.

Письменность шумеров является, по-видимому, столь же древней, как и письменность египтян. Вавилоняне делали записи острой палочкой на мягких глиняных табличках, которые затем обжигались на солнце или в печи. Эти записи оказались исключительно долговечными, а потому, в отличие от египетских папирусов, дошедших до нас в весьма малом числе экземпляров, в музеях мира хранятся десятки тысяч клинописных табличек. Через некоторое время после того, как Аккад завоевал шумеров, система счисления в Месопотамии стала шестидесятиричной, хотя сохранилось также и основание 10. Для малых чисел вавилонская система счисления в основных чертах напоминала египетскую. Одна вертикальная клинообразная черта (в раннешумерских табличках - небольшой полукруг) означала единицу; повторенный нужное число раз этот знак служил для записи чисел меньше десяти; для обозначения числа 10 вавилоняне, как и египтяне, ввели новый коллективный символ - более широкий клиновидный знак с острием, направленным влево, напоминающий по форме угловую скобку. Повторенный соответствующее число раз, этот знак служил для обозначения чисел 20, 30, 40 и 50. Но для записи чисел больше 59 древние вавилоняне впервые использовали новый принцип - одно из самых выдающихся достижений в развитии систем обозначений чисел - принцип позиционности, т.е. зависимости значения символа от его местоположения в записи числа. Вавилоняне заметили, что в качестве коллективных символов более высокого порядка можно применять уже ранее использованные символы, если они будут занимать в записи числа новое положение левее предыдущих символов. Так, один клиновидный знак мог использоваться для обозначения и 1, и 60, и 602, и 603, в зависимости от

занимаемого им в записи числа положения, подобно тому, как единица в наших обозначениях используется в записях и 10, и 102, и 103, и в числе 1111. При обозначении чисел больше 60 знаки, выступающие в новом качестве, отличались от старых тем, что символы разбивались на «места», или «позиции», и единицы более высокого порядка располагались слева. При таком способе записи для обозначения сколь угодно больших чисел уже не нужно было других символов, кроме уже известных. Древнем Вавилоне, ок. 1650 до н.э., система счисления оставалась псевдопозиционной или лишь относительно позиционной, поскольку не существовало эквивалента современной десятичной запятой, равно как и символа для обозначения отсутствующей позиции. Однако в период правления селевкидов, ок. 300 до н.э., эта неоднозначность была устранена введением специального символа в виде двух небольших клиньев, помещаемого на пустующее место, т.е. обозначающего пустую позицию в записи числа. Таким образом, из системы счисления была устранена отмеченная выше неоднозначность. В то же время не было найдено ни одной таблички с записью, в которой символ нуля находился бы в конце числа. Именно поэтому вавилонскую систему мы считаем лишь относительно позиционной, ибо самый правый знак мог означать либо единицы, либо кратные какой-нибудь степени числа 60. Тем не менее изобретение вавилонянами позиционной системы счисления с нулем представляло собой огромное достижение.

Размещено на Allbest.ru


Подобные документы

  • Понятие системы счисления. История развития систем счисления. Понятие натурального числа, порядковые отношения. Особенности десятичной системы счисления. Общие вопросы изучения нумерации целых неотрицательных чисел в начальном курсе математики.

    курсовая работа [46,8 K], добавлен 29.04.2017

  • Возникновение и основные этапы развития математики как науки о структурах, порядке и отношениях на основе операций подсчета, измерения и описания форм реальных объектов. Развитие знаний арифметики и геометрии в Древнем Востоке, Вавилоне и Древней Греции.

    презентация [1,8 M], добавлен 17.12.2010

  • Особенности периода математики постоянных величин. Создание арифметики, алгебры, геометрии и тригонометрии. Общая характеристика математической культуры Древней Греции. Пифагорейская школа. Открытие несоизмеримости, таблицы Пифагора. "Начала" Евклида.

    презентация [2,4 M], добавлен 20.09.2015

  • Основные этапы развития математики в Древней Греции. Изучение чисел и геометрии в Пифагорейской школе. Вклад Зенона, Демокрита, Платона и Евдокса в становление античной науки. Великий геометр древности Евклид и содержание его главного труда "Начала".

    презентация [2,5 M], добавлен 10.03.2013

  • Достижения древнеегипетской математики. Источники, по которым можно судить об уровне знаний древних египтян. Задачи на арифметическую и геометрическую прогрессии, нахождение числа Пи, подчёркивают практический и теоретический характер древней математики.

    реферат [165,8 K], добавлен 14.12.2009

  • Изобретение десятичной системы счисления относится к главным достижениям человеческой мысли. Без нее вряд ли могла существовать, а тем более возникнуть современная техника и наука вообще. История цифр. Числа и счисление. Способы запоминания чисел.

    реферат [42,5 K], добавлен 13.04.2008

  • Обзор развития европейской математики в XVII-XVIII вв. Неравномерность развития европейской науки. Аналитическая геометрия. Создание математического анализа. Научная школа Лейбница. Общая характеристика науки в XVIII в. Направления развития математики.

    презентация [1,1 M], добавлен 20.09.2015

  • Евдокс Книдский как математик и астроном. Разработка им так называемого "метода исчерпывания" как основ теории пределов и базы для развития математического анализа. Сведения о Пифагоре, его роль как ученого и политического деятеля, величие Архимеда.

    реферат [832,6 K], добавлен 28.05.2010

  • Изучение процесса появления действительных чисел, которые стали основой арифметики, а также способствовали возникновению рациональных и иррациональных чисел. Арифметика в трудах мыслителей Древней Греции. И. Ньютон и определение действительного числа.

    реферат [16,4 K], добавлен 15.10.2013

  • Об истории возникновения комплексных чисел и их роли в процессе развития математики. Алгебраические действия над комплексными числами и их геометрический смысл. Применение комплексных чисел к решению алгебраических уравнений 3-ей и 4-ой степеней.

    курсовая работа [104,1 K], добавлен 03.01.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.