История математики в Древнем Египте и Вавилоне

Этапы развития математических знаний: формирование понятия геометрической фигуры и числа, изобретение арифметических операций, появление дедуктивной математической системы. Древнейшие древнеегипетские математические тексты. Нумерация и разложение чисел.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 19.12.2010
Размер файла 216,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Оглавление

Введение

О математике в Древнем Египте

Нумерация и разложение чисел

Формулы египетской геометрии

Вавилонская математика

Алгебра в древнем Вавилоне

Вавилонская геометрия

Заключение

Введение

В истории математики традиционно выделяются несколько этапов развития математических знаний:

1. Формирование понятия геометрической фигуры и числа как идеализации реальных объектов и множеств однородных объектов. Появление счёта и измерения, которые позволили сравнивать различные числа, длины, площади и объёмы.

2. Изобретение арифметических операций. Накопление эмпирическим путём (методом проб и ошибок) знаний о свойствах арифметических действий, о способах измерения площадей и объёмов простых фигур и тел. В этом направлении далеко продвинулись шумеро-вавилонские, китайские и индийские математики древности.

3. Появление в древней Греции дедуктивной математической системы, показавшей, как получать новые математические истины на основе уже имеющихся. Венцом достижений древнегреческой математики стали «Начала» Евклида, игравшие роль стандарта математической строгости в течение двух тысячелетий.

4. Математики стран ислама не только сохранили античные достижения, но и смогли осуществить их синтез с открытиями индийских математиков, которые в теории чисел продвинулись дальше греков.

5. В XVI--XVIII веках возрождается и уходит далеко вперёд европейская математика. В XIX--XX веках становится понятно, что взаимоотношение математики и реальности далеко не столь просто, как ранее казалось.

Помимо большого исторического интереса, анализ эволюции математики представляет огромную важность для развития философии и методологии математики. Нередко знание истории способствует и прогрессу конкретных математических дисциплин; например, древняя китайская задача (теорема) об остатках сформировала целый раздел теории чисел.

О математике в Древнем Египте

Древнейшие древнеегипетские математические тексты относятся к началу II тысячелетия до н. э. Математика тогда использовалась в астрономии, мореплавании, землемерии, при строительстве зданий, плотин, каналов и военных укреплений. Денежных расчётов, как и самих денег, в Египте не было. К сожалению, египтяне писали на папирусе, который сохраняется плохо, и поэтому наши знания о математике Египта существенно меньше, чем о математике Вавилона или Греции. Вероятно, она была развита лучше, чем можно представить, исходя из дошедших до нас документов -- известно, что греческие математики учились у египтян.

Основные сохранившиеся источники: папирус Ахмеса или папирус Ринда (84 математические задачи) и московский математический папирус (25 задач), оба из Среднего царства, времени расцвета древнеегипетской культуры. Авторы текста нам неизвестны. Дошедшие до нас экземпляры -- это копии, переписанные в период гиксосов. Носители научных знаний тогда именовались писцами и фактически были государственными или храмовыми чиновниками.

Все задачи из папируса Ахмеса (записан ок. 1650 года до н. э.) имеют прикладной характер и связаны с практикой строительства, размежеванием земельных наделов и т. п. Задачи сгруппированы не по методам, а по тематике. По преимуществу это задачи на нахождение площадей треугольника, четырёхугольников и круга, разнообразные действия с целыми числами и аликвотными дробями, пропорциональное деление, нахождение отношений, возведение в разные степени, определение среднего арифметического, арифметические прогрессии, решение уравнений первой и второй степени с одним неизвестным.

Полностью отсутствуют какие бы то ни было объяснения или доказательства. Искомый результат либо даётся прямо, либо приводится краткий алгоритм его вычисления.

Такой способ изложения, типичный для науки стран древнего Востока, наводит на мысль о том, что математика там развивалась путём индуктивных обобщений и гениальных догадок, не образующих никакой общей теории. Тем не менее, в папирусе есть целый ряд свидетельств того, что математика в Древнем Египте тех лет имела или по крайней мере начинала приобретать теоретический характер. Так, египетские математики умели извлекать корни и возводить в степень, решать уравнения, были знакомы с арифметической и геометрической прогрессией и даже владели зачатками алгебры: при решении уравнений специальный иероглиф «куча» обозначал неизвестное.

Нам ничего не известно о развитии математических знаний в Египте как в более древние, так и в более поздние времена. После воцарения Птолемеев начинается чрезвычайно плодотворный синтез египетской и греческой культур.

Нумерация и разложение чисел

Иероглифическая запись числа 35736

Древнеегипетская нумерация, то есть запись чисел, была похожа на римскую: поначалу были отдельные значки для 1, 10, 100, … 10 000 000, сочетавшиеся аддитивно (складываясь). Египтяне писали справа налево, и младшие разряды числа записывались первыми, так что в конечном счёте порядок цифр соответствовал нашему. В иератическом письме уже есть отдельные обозначения для цифр 1-9 и сокращённые значки для разных десятков, сотен и тысяч.

Умножение египтяне производили с помощью сочетания удвоений и сложений. Деление заключалось в подборе делителя, то есть как действие, обратное умножению.

Особые значки обозначали дроби вида и . Однако общего понятия дроби у них не было, и все неканонические дроби представлялись как сумма аликвотных дробей. Типовые разложения были сведены в громоздкие таблицы.

Пример иероглифической записи уравнения

Числа в Древнем Египте записывали двумя способами: словами и цифрами.

Например, чтобы написать число 30, можно было использовать обычные иероглифы или то же самое написать цифрами (три символа десятки). Обоими способами можно было записывать любые числа.Египтяне использовали систему разложения наименьшего множителя на кратные числа, сумма которых составляла бы исходное число.

Чтобы правильно подобрать кратное число нужно было знать следующую таблицу значений:

1 x 2 = 2 2 x 2 = 4 4 x 2 = 8 8 x 2 = 16 16 x 2 = 32

Пример разложения числа 25:

· Кратный множитель для числа «25» - это 16.

· 25 - 16 = 9,

· Кратный множитель для числа «9» - это 8,

· 9 - 8 = 1,

· Кратный множитель для числа «1» - это 1,

· 1 - 1 = 0

Таким образом «25» - это сумма трех слагаемых: 16, 8 и 1.

Пример

Умножим «13» на «238»:

?

1 х 238

= 238

?

4 х 238

= 952

?

8 х 238

=1904

13 х 238

= 3094

Известно, что 13 = 8 + 4 + 1. Каждое из этих слагаемых нужно умножить на 238. Получаем: 13 Ч 238 = (8 + 4 + 1) Ч 238 = 8 x 238 + 4 Ч 238 + 1 Ч 238 = 3094.

Формулы египетской геометрии

В области геометрии египтяне знали точные формулы для площади прямоугольника, треугольника, трапеции и сферы, могли высчитывать объемы параллелепипеда, цилиндра и пирамид.

Площадь произвольного четырёхугольника со сторонами a, b, c, d вычислялась приближённо как ; эта грубая формула даёт приемлемую точность, если фигура близка к прямоугольнику.

Египтяне предполагали, что (погрешность менее 1 %).

Формула площади круга с диаметром d имела вид:

Ещё одна ошибка содержится в Акмимском папирусе: автор считает, что если радиус круга A есть среднее арифметическое радиусов двух других кругов B и C, то и площадь круга A есть среднее арифметическое площадей кругов B и C.

Вычисление объема усеченной пирамиды: пусть мы имеем правильную усечённую пирамиду со стороной нижнего основания a, верхнего b и высотой h; тогда объём вычислялся по оригинальной, но точной формуле:

Египетский треугольник

Египетский треугольник

Египетским треугольником называется прямоугольный треугольник с соотношением сторон 3:4:5. Особенностью треугольника, известной ещё со времён античности, является то, что при таком отношении сторон теорема Пифагора даёт целые квадраты как катетов, так и гипотенузы, то есть 9:16:25. Сумма указанных чисел (3+4+5=12) с древних времен использовалась как единица кратности при построении прямых углов с помощью веревки, размеченной узлами на 3/12 и 7/12 ее длины.

Название треугольнику с таким отношением сторон дали эллины. В VII - V веках до н. э. греческие философы и общественные деятели активно посещали Египет. Так, например, Пифагор в 535 до н. э. по настоянию Фалеса для изучения астрономии и математики отправился в Египет - и, судя по всему, именно попытка обобщения отношения квадратов, характерного для египетского треугольника, на любые прямоугольные треугольники и привела Пифагора к формулировке и доказательству его знаменитой теоремы.

Применялся египетский треугольник в архитектуре средних веков для построения схем пропорциональности и для построения прямых углов землемерами и архитекторами. Египетский треугольник является простейшим (и первым известным) из Героновых треугольников - треугольников с целочисленными сторонами и площадями.

Объем усеченного конуса

Реконструкция водяных часов по чертежам из Оксиринха

Древний свиток папируса, найденный в Оксиринхе, свидетельствует, что египтяне могли вычислять объем усеченного конуса. Эти знания ими использовались для сооружения водяных часов. Так, например, известно, что при Аменхотепе III были построены водяные часы в Карнаке.

О более раннем ходе развития математики в Египте сведений нет никаких. О более позднем, вплоть до эпохи эллинизма -- тоже. После воцарения Птолемеев начинается чрезвычайно плодотворный синтез египетской и греческой культур.

Вавилонская математика

Вавилоняне писали клинописными значками на глиняных табличках, которые в немалом количестве дошли до наших дней (более 500 тыс., из них около 400 связаны с математикой). Поэтому мы имеем довольно полное представление о математических достижениях учёных Вавилонского государства. Отметим, что корни культуры вавилонян были в значительной степени унаследованы от шумеров -- клинописное письмо, счётная методика и т. п.

математический геометрический древнеегипетский число

Вавилонские цифры

Вавилонская расчётная техника была намного совершеннее египетской, а круг решаемых задач существенно шире. Есть задачи на решение уравнений второй степени, геометрические прогрессии. При решении применялись пропорции, средние арифметические, проценты. Методы работы с прогрессиями были глубже, чем у египтян. Линейные и квадратные уравнения решались ещё в эпоху Хаммурапи; при этом использовалась геометрическая терминология (произведение ab называлось площадью, abc -- объёмом, и т. д.). Многие значки для одночленов были шумерскими, из чего можно сделать вывод о древности этих алгоритмов; эти значки употреблялись, как буквенные обозначения неизвестных в нашей алгебре. Встречаются также кубические уравнения и системы линейных уравнений. Венцом планиметрии была теорема Пифагора, известная ещё в эпоху Хаммурапи.

Алгебра в древнем Вавилоне

По-видимому, одной из особых причин, вызвавших развитие алгебры примерно около 2000 г. до н.э., было то, что новые семитские правители Вавилона использовали прежнее шумерийское письмо. Это письмо, как и иероглифы, было набором идеограмм - каждый знак обозначал отдельное понятие. Семиты воспользовались им для фонетической записи слов своего языка и вместе с тем применяли некоторые знаки в их прежнем значении. Следовательно, эти знаки по-прежнему выражали понятия, но произносились иначе. Такие идеограммы были вполне пригодны для алгебраического языка, подобно нашим современным знакам +, -, ..., которые в действительности тоже идеограммы. В вавилонских школах администраторов этот алгебраический язык стал частью учебной программы на много поколений и, хотя власть переходила в руки новых правителей - касситов, ассирийцев, мидян, персов, эта традиция оставалась в силе.

Самые сложные задачи относятся к более поздним периодам в истории древней цивилизации, а именно, к персидской эпохе и эпохе Селевкидов. В те времена Вавилон уже не был политическим центром, но в течение ряда столетий он оставался интеллектуальной столицей обширной империи, в которой вавилоняне смешались с персами, греками, евреями, индусами и многими другими народами. Но во всех клинописных текстах видна непрерывность традиции, что, вероятно, указывает на местную непрерывность развития.

Можно быть уверенным в том, что этому развитию способствовало взаимно обогащавшее общение с другими цивилизациями. Мы знаем, что вавилонская астрономия этого периода оказала влияние на греческую и что вавилонская математика повлияла на вычислительную арифметику. Есть основания полагать, что вавилонские школы писцов были посредниками между наукой Греции и наукой Индии. Мы всё еще мало осведомлены о роли персидской и селевкидской Месопотамии в распространении древневосточной и античной астрономии и математики, но все доступные данные указывают на то, что эта роль должна была быть значительной. Средневековая арабская и индийская наука опиралась не только на традиции Александрии, но и на традиции Вавилона.

Шумеры и вавилоняне использовали 60-ричную позиционную систему счисления, увековеченную в нашем делении круга на 360°, часа на 60 минут и минуты на 60 секунд. Для умножения применялся громоздкий комплект таблиц. Для вычисления квадратных корней вавилоняне изобрели итерационный процесс: новое приближение получалось из предыдущего по формуле метода Ньютона:

an + 1 = (an + N / an) / 2

Ппример, взятый из одной из глиняных табличек этого периода.

«Площадь , состоящая из суммы двух квадратов, составляет 1000. Сторона одного из квадратов составляет стороны другого квадрата, уменьшенные на 10. Каковы стороны квадратов?»

Это приводит к уравнениям , решение которых сводится к решению квадратного уравнения , имеющему положительный корень .

В действительности решение в клинописном тексте ограничивается, как и во всех восточных задачах, простым перечислением этапов вычисления, необходимого для решения квадратного уравнения:

«Возведи в квадрат 10; это дает 100; вычти 100 из 1000; это дает 900» и т. д.

В клинописных текстах есть задачи и на сложные проценты. Например, ставится вопрос, за какое время удвоится сумма денег, ссуженная под 20 (годовых) процентов.

Это приводит к уравнению , которое решается так: сначала замечают, что , а затем применяют линейную интерполяцию. В наших обозначениях

,

что дает для значение 4 года минус (2, 33, 20) месяцев.

Вавилонская геометрия

Резко выраженный арифметико-алгебраический характер вавилонской математики проявляется и в геометрии. Как и в Египте, геометрия развивалась на основе практических задач измерения, но геометрическая форма задачи обычно является только средством для того, чтобы поставить алгебраический вопрос. Тексты показывают, что вавилонская геометрия семитского периода располагала формулами для площадей простых прямолинейных фигур и для объемов простых тел, хотя объем усеченной пирамиды еще не был найден. Так называемая теорема Пифагора была известна не только для частных случаев, но и в полной общности. Основной чертой этой геометрии был все же ее алгебраический характер. Это в равной мере относится и ко всем позднейшим текстам, особенно к текстам третьего периода, от которого до нас дошло немалое их число, - эпохи нововавилонской, персидской и эпохи Селевкидов (примерно от 600 г. до н.э. до 300 г.н. ».). Тексты этого последнего периода обнаруживают значительное влияние вавилонской астрономии, которая в это время приобретает характер настоящей науки, что сказывается в тщательном анализе различных эфемерид. Вычислительная техника математических текстов становится еще более совершенной; алгебра справляется с задачами на уравнения, для которых требуется значительное вычислительное искусство. От эпохи Селевкидов дошли вычисления, которые доведены до семнадцатого шестидесятичного знака. Столь сложные вычислительные работы уже нельзя связывать с вычислением налогов или измерением - стимулом для них были астрономические задачи или просто любовь к вычислениям.

Многое в этой вычислительной арифметике выполнялось с помощью таблиц, в наборе которых есть и простые таблицы для умножения, и таблицы обратных величин, квадратных и кубических корней. В одной из таблиц имеется ряд чисел вида , которым, по-видимому, пользовались для решения кубических уравнений вида . В них содержатся некоторые превосходные приближения: для дается (), для дается . Видимо, квадратные корни определялись по формуле наподобие следующей:

.

Что касается значения , в большинстве случаев таблички обходятся библейским . Есть указания на то, что применялись и лучшие приближения, дававшие для значение .

Уравнение появляется в задаче, в которой требуется решить систему уравнений , что сводится к уравнению или, согласно таблицам, .

В геометрии рассматривались те же фигуры, что и в Египте, плюс сегмент круга и усечённый конус. В ранних документах полагают р = 3; позже встречается приближение 25/8 = 3,125. Вавилоняне умели вычислять площади правильных многоугольников; видимо, им был знаком принцип подобия. Для площади неправильных четырёхугольников использовалась та же приближённая формула, что и в Египте: .

Всё же богатая теоретическая основа математики Вавилона не имела целостного характера и сводилась к набору разрозненных приёмов, лишённых доказательной базы. Систематический доказательный подход в математике появился только у греков.

Заключение

Во всей математике Древнего Востока мы нигде не находим никакой попытки дать то, что мы называем доказательством. Нет никаких доводов, мы имеем только предписания в виде правил: «делай то-то, делай так-то». Мы не знаем, как там были получены теоремы, например, как вавилонянам стала известна теорема Пифагора. Было сделано несколько попыток объяснить, как египтяне и вавилоняне получали свои результаты, но все они являются только предположениями. Нам, воспитанным на строгих выводах Евклида, весь этот восточный способ рассуждения кажется на первый взгляд странным и крайне неудовлетворительным. Но такое впечатление исчезает, когда мы уясняем себе, что большая часть математики, которой мы обучаем современных инженеров и техников, все еще строится по принципу «делай то-то и делай так-то», без большого стремления к строгости доказательств. Алгебру во многих средних школах все еще изучают не как дедуктивную науку, а скорее как набор правил. Видимо, восточная математика никогда не могла освободиться от тысячелетнего влияния технических проблем и проблем управления, для пользы которых она и была создана

Размещена Allbest.ru


Подобные документы

  • История отрицательных чисел: их отрицание в Древнем Египте, Вавилоне, Греции, узаконивание в Китае и Индии. Математические действия с ними. Подходы к определению положению нуля как натурального числа. Изучение отрицательных чисел в школьной программе.

    презентация [178,6 K], добавлен 13.05.2011

  • Возникновение и основные этапы развития математики как науки о структурах, порядке и отношениях на основе операций подсчета, измерения и описания форм реальных объектов. Развитие знаний арифметики и геометрии в Древнем Востоке, Вавилоне и Древней Греции.

    презентация [1,8 M], добавлен 17.12.2010

  • Число как основное понятие математики. Натуральные числа. Простые числа Мерсенна, совершенные числа. Рациональные числа. Дробные числа. Дроби в Древнем Египте, Древнем Риме. Отрицательные числа. Комплексные, векторные, матричные, трансфинитные числа.

    реферат [104,5 K], добавлен 12.03.2004

  • История возникновения и развития математической логики как раздела математики, изучающего математические обозначения и формальные системы. Применение математической логики в технике и криптографии. Взаимосвязь программирования и математической логики.

    контрольная работа [50,4 K], добавлен 10.10.2014

  • Предпосылки зарождения математики в Древнем Египте. Задачи на вычисление "аха". Наука древних египтян. Задача из папируса Райнда. Геометрия в Древнем Египте. Высказывания великих ученых о важности математики. Значение египетской математики в наше время.

    реферат [18,3 K], добавлен 24.05.2012

  • Общая характеристика математической культуры древних цивилизаций. Основные хронологические периоды зарождения и развития математики. Особенности математики в Египте, Вавилоне, Индии и Китае в древности. Математическая культура индейцев Мезоамерики.

    презентация [16,3 M], добавлен 20.09.2015

  • Появление отрицательных чисел. Понятие мнимых и комплексных чисел. Формула Эйлера, связывающая показательную функцию с тригонометрической. Изображение комплексного числа на координатной плоскости. "Гиперкомплексные" числа Гамильтона ("кватернионы").

    презентация [435,9 K], добавлен 16.12.2011

  • Особенности возникновения и использования дробей в Египте. Особенности применения шестидесятеричных дробей в Вавилоне, греческими и арабскими математиками и астрономами. Отличительные черты дробей в Древнем Риме и Руси. Дробные числа в современном мире.

    презентация [1,3 M], добавлен 29.04.2014

  • Содержание математики как системы математических моделей и инструментов для их создания. Возникновение "теории идей". Натуральные числа, множество целых чисел, рациональное число, вещественное или действительное число. Существующая теория чисел.

    реферат [81,7 K], добавлен 13.01.2011

  • Изучение возникновения математики и использования математических методов Древнем Китае. Особенности задач китайцев по численному решению уравнений и геометрических задач, приводящих к уравнениям третьей степени. Выдающиеся математики Древнего Китая.

    реферат [27,6 K], добавлен 11.09.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.