Квадратурные формулы

Вычисление определенных интегралов с помощью квадратурных формул. Вывод формул численного интегрирования с использованием интерполяционного полинома Лагранжа. Общая формула Симпсона, простейшие квадратурные формулы. Квадратурная формула Чебышева.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 21.12.2010
Размер файла 80,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Погрешности квадратурных формул при вычислении определенных интегралов

1.1 Вывод формул численного интегрирования с использованием интерполяционного полинома Лагранжа

2. Простейшие квадратурные формулы

2.1 .Общая формула Симпсона (параболическая формула)

2.2 Квадратурная формула Чебышева

Заключение

Список использованных источников

Введение

Квадратурные формулы - формулы, служащие для приближённого вычисления определённых интегралов по значениям подынтегральной функции в конечном числе точек.

Требуется найти определенный интеграл

I =

по квадратурной формуле Чебышева.

Рассмотрим, что представляет из себя вообще квадратурная формула, и как можно с ее помощью вычислить приближенно интеграл.

Известно, что определенный интеграл функции типа численно представляет собой площадь криволинейной трапеции ограниченной кривыми x=0, y=a, y=b и y= (Рис. 1).

Рисунок 1 - Криволинейная трапеция

Если f(x) непрерывна на отрезке [a, b], и известна ее первообразная F(x), то определенный интеграл от этой функции в пределах от а до b может быть вычислен по, известной всем, формуле Ньютона - Лейбница

= F(b) - F(a)

где F'(x) = f(x), первообразная.

Однако во многих случаях F(x) не может быть найдена, или первообразная получается очень сложной для вычисления.

Кроме того, функция часто задается таблично. Поэтому большое значение приобретает приближенное и в первую очередь численное интегрирование.

Задача численного интегрирования состоит в нахождении приближенного значения интеграла по заданным или вычисленным значениям подынтегральной функции f(x) в некоторых точках ( узлах ) отрезка [ a, b].

Численное определение однократного интеграла называется механической квадратурой, а соответствующие формулы численного интегрирования - квадратурными .

Заменяя подынтегральную функцию каким-либо интерполяционным многочленом, мы получим квадратурные формулы вида

где

xk - выбранные узлы интерполяции;

Ak - коэффициенты, зависящие только от выбора узлов, но не от вида функции (k=0,1,2,........, n).

R - остаточный член, или погрешность квадратурной формулы.

Отбрасывая остаточный член R, мы совершаем погрешность усечения.

При расчете к ней добавляются еще различные погрешности округления.

Разобьем отрезок интегрирования [a, b] на n равных частей системой точек

xi= xo+ i..h; ( i = 0,1,2,......,n)

xo= a; xn= b;

h= (b-a)/n ;

и вычислим подинтегральную функцию в полученных узлах

yi= f(xi) ; ( i = 0,1,2,......,n).

1 Погрешности квадратурных формул при вычислении определенных интегралов

1.1 Вывод формул численного интегрирования с использованием интерполяционного полинома Лагранжа

Пусть для y=f(x) известны в n+1 точках X0,X1,X2..Xn промежутка [a,b] соответствующие значения f(xi)=yi (i=0,1,2..n). Требуется приближенно найти

По заданным значениям Yi построим полином Лагранжа. Заменим f(x) полиномом Ln(x). Тогда

где Rn(f) - ошибка квадратурной формулы. Отсюда, воспользовавшись выражением для Ln(x), получаем приближенную квадратурную формулу:

Для вычисления коэффициентов Аi заметим что:

1.коэффициенты Ai при данном расположении узлов не зависит от выбора функции f(x);

2.для полинома степени n последняя формула точная.

Полагая y=xK (k=0,1,2..,n), получим линейную систему из n+1 уравнений:

где

интеграл квадратурный формула чебышев

(k=0,1,..,n), из которой можно определить коэффициенты А0,А1,..,АN.

Определитель системы есть определитель Вандермонда

Заметим, что при применении этого метода фактическое построение полинома Лагранжа Ln(x) является излишним. Простой метод подсчета погрешности квадратурных формул разработан С.М. Никольским.

Теперь рассмотрим несколько простейших квадратурных формул.

2. Простейшие квадратурные формулы

2.1 .Общая формула Симпсона (параболическая формула)

Пусть n=2m есть четное число и yi=f(xi) (i=0,1,2...n) - значения функции y=f(x) для равноотстоящих точек а=x0,x1, ... ,xn=b с шагом

Применив формулу Симпсона к каждому удвоенному промежутку [x0,x2], [x2,x4] ... [x2m-2,x2m] длины 2h и введя обозначения:

1=y1+y2+ ... +y2m-1

2=y2+y4+ ... +y2m

получим обобщенную формулу Симпсона:

Остаточный член формулы Симпсона в общем виде:

где k I (x2к-2,x2к)

2.2 Квадратурная формула Чебышева

Рассмотрим квадратурную формулу вида:

функцию f(x) будем исать в виде когда f(x) многочлен вида f(x)=ao+a1x+...+anxn. Проинтегрировав, преобразовав и подставив значения многочлена в узлах

f(x1)=a0+a1x1+a2x12+a3x13+...+anx1n

f(x2)=a0+a1x2+a2x22+a3x23+...+anx2n

f(x3)=a0+a1x3+a2x32+a3x33+...+anx3n

. . . . . . . . . . . . . . . .

f(xn)=a0+a1xn+a2xn2+a3xn3+...+anxnn

получим формулу Чебышева

Заключение

Таким образом, очевидно, что при вычислении определенных интегралов с помощью квадратурных формул, а в частности по формуле Чебышева не дает нам точного значения, а только приближенное.

Чтобы максимально приблизиться к достоверному значению интеграла нужно уметь правильно выбрать метод и формулу, по которой будет вестись расчет. Так же очень важно то, какой будет взят шаг интегрирования.

Хотя численные методы и не дают очень точного значения интеграла, но они очень важны, так как не всегда можно решить задачу интегрирования аналитическим способом.

Список использованных источников

1. Ракитин Т.А., Первушин В.А. «Практическое руководство по численным методам с приложением программ на языке Basic»

2. Крылов В.И. «Приближенные вычисления интегралов» - М. : Физмат.

3. Демидович и Марон «Основы вычислительной математики»

4. Копченова и Марон «Вычислительная математика в примерах и задачах»

5. Вольвачев А.Н., Крисевич В.С. Программирование на языке Паскаль для ПЭВМ ЕС. Минск.: 1989 г.

Размещено на Allbest.ru


Подобные документы

  • Решение задачи по вычислению определенного интеграла с помощью квадратурных формул и основная идея их построения. Количество параметров квадратурного выражения, степень подынтегральной функции. Построение квадратурных формул с плавающими узлами.

    реферат [51,4 K], добавлен 08.08.2009

  • Постановка задачи вычисления значения определённых интегралов от заданных функций. Классификация методов численного интегрирования и изучение некоторых из них: методы Ньютона-Котеса (формула трапеций, формула Симпсона), квадратурные формулы Гаусса.

    реферат [99,0 K], добавлен 05.09.2010

  • Обзор квадратурных формул Гаусса, их определение, интегральные конструкции, примеры, четко описывающие квадратуры Гаусса. Особенности использования некоторых алгоритмов, позволяющих отследить ход решений задач, использующих квадратурные формулы Гаусса.

    контрольная работа [309,6 K], добавлен 16.12.2015

  • Характеристика методов численного интегрирования, квадратурные формулы, автоматический выбор шага интегрирования. Сравнительный анализ численных методов интегрирования средствами MathCAD, а также с использованием алгоритмических языков программирования.

    контрольная работа [50,8 K], добавлен 06.03.2011

  • Построение квадратурной формулы максимальной степени точности. Определение алгебраической степени точности указанной квадратурной формулы. Сравнительный анализ квадратурных формул средних прямоугольников и трапеций на примере вычисления интеграла.

    лабораторная работа [195,9 K], добавлен 21.12.2015

  • Вид определенного интеграла от непрерывной на заданном отрезке функции. Сущность квадратурных формул. Нахождение численного значения интеграла с помощью методов левых и правых прямоугольников, трапеций, парабол. Выведение общей формулы Симпсона.

    презентация [120,3 K], добавлен 18.04.2013

  • Иоганн Карл Фридрих Гаусс - величайший математик всех времен. Интерполяционные формулы Гаусса, дающие приближенное выражение функции y=f(x) при помощи интерполяции. Области применение формул Гаусса. Основные недостатки интерполяционных формул Ньютона.

    контрольная работа [207,3 K], добавлен 06.12.2014

  • Применение формулы Грина к решению задач. Понятие ротора векторного поля. Вывод формулы Грина из формулы Стокса и ее доказательство. Определение непрерывно дифференцируемых функций. Применение формулы Грина для вычисления криволинейного интеграла.

    курсовая работа [2,9 M], добавлен 11.07.2012

  • Использование численных методов, позволяющих найти приближенное значение определенного интеграла с заданной точностью. Анализ формул трапеции и параболы (Симпсона). Основной принцип построения формул приближенного вычисления определенного интеграла.

    презентация [96,6 K], добавлен 18.09.2013

  • Основные формулы и алгебраические свойства. Применение многочленов Чебышева-Эрмита в квантовой механике. Определение потенциальной энергии. Ортонормированный многочлен Чебышева-Эрмита. Уравнение Шрёдингера в одномерном случае. Коэффициенты разложения.

    курсовая работа [459,1 K], добавлен 21.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.