Понятие и свойства тройных интегралов

Нахождение массы тела переменной плотности как путь выведения понятия и алгоритма тройного интеграла. Их вычисление с помощью повторного интегрирования. Цилиндрические координаты как соединение полярных в плоскости xy с обычной декартовой аппликатой z.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 12.11.2010
Размер файла 379,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1. Тройной интеграл

Чтобы ввести понятие тройного интеграла, предварительно рассмотрим задачу о нахождении массы тела переменной плотности.

Пусть в системе координат Оxyz (рис. 2.18) задано некоторое ограниченное тело U с переменной плотностью г=f(x;y;z)>0, (x;y;z)U.

Требуется приближенно вычислить массу этого тела.

Для этого разрежем это тело на n "достаточно мелких частей" ДUi, i=1,2,...,n. Внутри этого "кусочка" можно принять, что г ? const=f(Mi), где Mi(x;y;z) - некая "средняя" точка в ДUi.

Обозначим объём "кусочка" ДUi через ДVi, тогда масса "кусочка" ДMi: ДMi?f(Mi)·ДVi. А для всего тела:

получена интегральная сумма.

Затем переходим к пределу при n ? и ДVi 0, i=1,2,...,n и получаем:

Если предел (2.23) интегральной суммы существует, то он называется тройным интегралом от функции f(x;y;z) по объему U и обозначается:

После этого можно сформулировать более точное и общее определение тройного интеграла.

Определение 1

Пусть f(x;y;z), (x;y;z) U - произвольная функция трех переменных, U - ограниченная трехмерная область.

Разобьем U произвольным образом на части ДU1, ДU2,...,ДUn. В каждой из них возьмем произвольную точку Mi(xi;yi;zi)Ui и составим интегральную сумму:

Если существует предел интегральной суммы:

не зависящий от способа разбиения U на n частей ДU1, ДU2,...,ДUn, а также от произвола в выборе точек MiUi, то этот предел I обозначается через и называется тройным интегралом от функции f(x;y;z) по объёму U. При этом функция f(x;y;z) называется интегрируемой по U.

Теорема 1

Если f(x;y;z), (x;y;z) U непрерывна, то она интегрируема по U.

Определение 2

Тройные интегралы от непрерывных функций называются собственными тройными интегралами (или просто тройными интегралами), а тройные интегралы от разрывных функций - несобственными тройными интегралами.

В дальнейшем считаем, что все появляющиеся в тексте функции (если это не оговорено особо) интегрируемы по объёму.

1.1 Вычисление тройных интегралов с помощью повторного интегрирования

1. Предположим, что функция f(x, y, z) непрерывна в рассматриваемой области T.

Пусть сначала T = [a, b; c, d; e, f] - прямоугольный параллелепипед, проектирующийся на плоскость yz в прямоугольник R = [c, d; e, f]. Тогда

Заменяя в (1) двойной интеграл повторным, получим

Вычисление тройного интеграла сводится к последовательному вычислению трёх определённых интегралов.

Если первые два интеграла в (2) объединить в двойной, то будем иметь

где P = [a, b; c, d] - проекция параллелепипеда T на плоскость xy.

Заметим, что в этих случаях можно менять роли переменных.

2. Пусть область T заключена между плоскостями x = a и x = b, причём каждое сечение области T плоскостью представляет собой квадрируемую фигуру G(x)(рис. 1). Тогда

3. Пусть теперь тело T представляет собой "цилиндрический брус", ограниченный снизу и сверху, соответственно, поверхностями z = z1(x, y) и z = z2(x, y), проектирующиеся на плоскость xy в некоторую квадрируемую фигуру G (рис.2), z1(x, y) и z2(x, y) - непрерывны в G. Тогда

Если G = {(x, y): a x b, y1(x) y y2(x)}, то

Отметим, что наряду с указанными формулами имеют место и им подобные, получающиеся перестановкой переменных x, y и z.

1.2 Замена переменных в тройном интеграле

состоит в переходе от переменных x, y, z к новым переменным u, v, w по формулам

Если выполняются условия:

1?. Отображение (6) взаимно однозначно;

2?. Функции в (6) непрерывно - дифференцируемы в области

3?. Якобиан отображения

то имеет место формула

Формулы (6) называют криволинейными координатами (u, v, w) в области T. Рассмотрим примеры криволинейных координат.

Вычисление тройного интеграла в декартовых координатах.

Пусть  является цилиндрическим телом, проекция которого на плоскость  есть область и которое ограничено снизу поверхностью , а сверху v поверхностью , где   - непрерывные функции в . Тогда

,

то есть интегрированием по z тройной интеграл сводится к двойному интегралу по области . Для областей более сложной формы вычисление двойных и тройных интегралов производится разбиением областей на конечное число простых областей с уже рассмотренными свойствами.

1.3 Свойства тройного интеграла

Пусть - ограниченная замкнутая пространственная область, границей которой является кусочно-гладкая поверхность, и пусть функция  определена и ограничена в  . Посредством сетки кусочно-гладких поверхностей разобьем на конечное число элементарных областей   с объемами (разбиение). Пусть . наибольший из диаметров областей  , получающийся при разбиении . В каждой из элементарных областей выберем произвольную точку . Число ставится в соответствие каждому разбиению  и каждому выбору точек и называется интегральной суммой. Если существует   и он не зависит от выбора разбиения и точек, то функция называется интегрируемой по Риману в области  , а сам предел называется тройным интегралом от функции   по области  и обозначается  . Свойства тройных интегралов такие же, как и у двойных интегралов.

Теорема 2.6 (среднем значении для тройного интеграла):

где M* - некая "средняя" точка области U, f(x;y;z) - непрерывна в U.

Доказательство

Используем свойство:

Число I/U - является промежуточным значением непрерывной функции f(x;y;z), поэтому существует точка M*, такая, что

в итоге , что и требовалось доказать.

1.4 Тройной интеграл в цилиндрических координатах

1. Цилиндрические координаты представляют соединение полярных координат в плоскости xy с обычной декартовой аппликатой z (рис. 3).

Пусть M(x, y, z) - произвольная точка в пространстве xyz, P - проекция точки M на плоскость xy. Точка M однозначно определяется тройкой чисел - полярные координаты точки P, z - аппликата точки M. Формулы, связывающие их с декартовыми, имеют вид

Якобиан отображения (8)

Пример 2.

Вычислить интеграл

где T - область, ограниченная поверхностями

Решение. Перейдём в интеграле к сферическим координатам по формулам (9). Тогда область интегрирования можно задать неравенствами

А, значит,

Пример 3 Найти объём тела, ограниченного:

x2+y2+z2=8,

z =

,

(z ? 0).

Решение

Имеем: x2+y2+z2=8 - сфера радиуса R= v8 с центром в точке O(000),

z =

- верхняя часть конуса z2=x2+y2 с осью симметрии Оz и вершиной в точке O (рис. 2.20).

Найдем линию пересечения сферы и конуса:

И так как по условию z ? 0, то

- окружность R=2, лежащая в плоскости z=2.

Поэтому согласно (2.28)

где область U ограничена сверху

(часть сферы),

снизу -

(часть конуса);

область U проектируется на плоскости Оху в область D - круг радиуса 2.

Следовательно, целесообразно перейти в тройном интеграле к цилиндрическим координатам, используя формулы (2.36):

Пределы изменения ц, r находим по области D v полный круг R=2 с центром в точке О, тем самым: 0?ц?2р, 0?r?2. Таким образом, область U в цилиндрических координатах задается следующими неравенствами:

Тогда

Заметим, что

тогда

Ответ:

1.5 Тройной интеграл в сферических координатах

Пусть M(x, y) - произвольная точка в пространстве xyz, P - проекция точки M на плоскость xy. Точка M однозначно задаётся тройкой чисел , где r - расстояние точки M до точки 0, - угол между лучами OM и OZ, - полярный угол точки P на плоскости xy. Тройка чисел называется сферическими координатами точки M.

Они связаны с прямоугольными формулами

Якобиан отображения . Иногда используются обобщённые сферические координаты.

Объём V кубируемой области T (кубического тела) в пространстве xyz выражается формулой

Переходя в этом равенстве к новым переменным по формулам (6), получим выражение объёма области T в криволинейных координатах

Пусть T - материальное тело (кубируемая область) с плотностью

Тогда

- масса тела.

Пример Вычислить объём тела, ограниченного поверхностями: x2 + y2 + z2 = a2, x2 + y2 - ax = 0. (рис. 5)

Решение. Рассмотрим одну четвёртую часть тела, лежащёю в первом октанте. Часть поверхности вырезанная цилиндром, проектируется в область . Тогда

Перейдём в интеграле к цилиндрическим координатам по формулам (8). При этом уравнение окружности x? + y? - ax = 0 преобразуется в кривую а уравнение поверхности - к виду

Таким образом

1.6. Приложения тройного интеграла

1. Вычисление объёма тела:

Доказательство

Так как f(x;y;z)=I>0 на U, то - масса тела с плотностью г=1.

Поэтому M=г·V=1·V=V. В итоге I=V, что и требовалось доказать.

Если U=U1 U2, где U1 и U2 не пересекаются, то

Если известны наименьшее m и наибольшее M значения непрерывной функции f(x;y;z), (x;y;z)U в области U, то тройной интеграл оценивается так:

2. Вычисление массы тела переменной плотности г (x;y;z):

3. Координаты центра тяжести тела с постоянной плотностью:

4. Координаты центра тяжести тела с переменной плотностью г (x;y;z):

Пример Найти массу тела с переменной плотностью

,

если тело U ограничено:

,

,

,

,

.

Решение

Имеем:

Тело U ограничено:

- сферой R=1 с центром в точке O(0;0;0);

-

- сферой R=4 с центром в точке O(0;0;0);

- верхней частью конуса z2=x2+y2 с осью симметрии Оz и вершиной в точке О;

- координатной плоскостью Оyz;

-

- координатной плоскостью Оxz.

При наличии двух сфер и конуса целесообразно перейти к сферическим координатам, подставляя формулы (2.41) в каждое уравнение границ области U:

,

- первая четверть на плоскости

;

то есть

Плотность в сферических координатах:

.

Тогда:


Подобные документы

  • Рассмотрение задач численного интегрирования по простейшим формулам. Понятие тройных интегралов и их применение для вычисления объема, массы, площади, моментов инерции, статистических моментов и координат центра масс тела на конкретных примерах.

    курсовая работа [348,5 K], добавлен 17.12.2013

  • Понятие интеграла. Приложения двойных интегралов к задачам механики: масса плоской пластинки переменной плотности; статические моменты и центр тяжести пластинки; моменты инерции пластинки. Вычисление площадей и объёмов с помощью двойных интегралов.

    реферат [508,3 K], добавлен 16.06.2014

  • Непосредственное (элементарное) интегрирование, вычисление интегралов с помощью основных свойств неопределенного интеграла и таблицы интегралов. Метод замены переменной (метод подстановки). Интегрирование по частям, определение точности интегралов.

    презентация [117,8 K], добавлен 18.09.2013

  • Разложение функции в ряд Фурье, поиск коэффициентов. Изменение порядка интегрирования, его предел. Расчет площади фигуры, ограниченной графиками функций, с помощью двойного интеграла, объема тела, ограниченного поверхностями, с помощью тройного интеграла.

    контрольная работа [111,8 K], добавлен 28.03.2014

  • Специфика декартовых координат и способ их использования при вычислении двойного интеграла, сведенного к повторному интегрированию. Примеры решения задач и особенности определения тройного интеграла в системе цилиндрических и сферических координат.

    презентация [69,7 K], добавлен 17.09.2013

  • Понятие определённого интеграла, расчет площади, объёма тела и длины дуги, статического момента и центра тяжести кривой. Вычисление площади в случае прямоугольной криволинейной области. Применение криволинейного, поверхностного и тройного интегралов.

    курсовая работа [2,1 M], добавлен 19.05.2011

  • Поиск общего интеграла дифференциального уравнения. Расстановка пределов интегрирования. Координаты вершины параболы. Объем тела, ограниченного поверхностями. Вычисление криволинейного интеграла. Полный дифференциал функции. Вычисление дуги цепной линии.

    контрольная работа [298,1 K], добавлен 28.03.2014

  • Определение определенного интеграла, правила вычисления площадей поверхностей и объемов тел с помощью двойных и тройных интегралов. Понятие и виды дифференциальных уравнений, способы их решения. Действия над комплексными числами, понятие и свойства рядов.

    краткое изложение [145,1 K], добавлен 25.12.2010

  • Определение криволинейного интеграла по координатам, его основные свойства и вычисление. Условие независимости криволинейного интеграла от пути интегрирования. Вычисление площадей фигур с помощью двойного интеграла. Использование формулы Грина.

    контрольная работа [257,4 K], добавлен 23.02.2011

  • Задача численного интегрирования функций. Вычисление приближенного значения определенного интеграла. Нахождение определенного интеграла методами прямоугольников, средних прямоугольников, трапеций. Погрешность формул и сравнение методов по точности.

    методичка [327,4 K], добавлен 01.07.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.