Гамма и ее приложения
Представление бета и гамма функций с помощью интегралов Эйлера соответственно первого и второго рода, их применение для вычисления интегралов. Бета и гамма функции. Производная гамма функции. Вычисление интегралов формула Стирлинга, примеры вычислений.
Рубрика | Математика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 30.10.2010 |
Размер файла | 133,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Гамма и ее приложения
Содержание
Введение
Бета функции
Гамма функции
Производная гамма функции
Вычисление интегралов формула Стирлинга
Примеры вычеслений
Выводы
Список литературы
Введение
Выделяют особый класс функций, представимых в виде собственого либо несобственого интеграла, который зависит не только от формальной переменной, а и от параметра.
Такие функции называются интегралами зависящими от параметра. К их числу относятся гамма и бета функции Эйлера.
Бета функции представимы интегралом Эйлера первого рода:
гамма функция представляется интегралом Эйлера второго рода:
1. Бэта-функции 6
Бэта - функции определяются интегралом Эйлера первого рода:
= (1.1)
сходятся при .Полагая =1 - t получим:
= - =
т.e. аргумент и входят в симетрично. Принимая во внимание тождество
по формуле интегрирования почестям имеем
Откуда
= (1.2)
При целом b = n последовательно применяя(1.2)
Получим
(1.3)
при целых = m,= n,имеем
но B(1,1) = 1,следовательно:
Положим в (1.1) .Так как график функции
симметрична относительно прямой ,то
и в результате подстановки
,
получаем
полагая в(1.1)
,
Откуда
,
получим
(1.4)
разделяя интеграл на два в пределах от 0 до 1 и от 1 до и применение ко второму интегралу подстановки
,
получим
=
2. Гамма-функция
Гамма функцию определяет интеграл Эйлера второго рода
(a) = (2.1)
сходящийся при 0.Положим =ty,t > 0,имеем
(a) =
и после замены , через и t через 1+t,получим
Умножая это равенство и интегрируя по t и пределах от 0 до, имеем:
или на основании (1.4) и после изменения в правой части порядка интегрирования,получаем:
откуда
(2.2)
заменяя в (2,1) ,на и интегрируем по частям
получаем рекурентною формулу
(2.3)
так как
но при целом имеем
(2.4)
то есть при целых значениях аргумента гамма-функция превращается в факториал.Порядок которого на единицу меньше взятого значения аргумента.При n=1 в (2.4) имеем
3. Производная гамма функции
Интеграл
сходится при каждом ,поскольку
,
и интеграл
при сходится.
В области , где - произвольное положительное число, этот интеграл сходится равномерно, так как
и можна применить признак Веерштраса. Сходящимся при всех значениях является и весь интеграл
так как и второе слогаемое правой части является интегралом, заведомо сходящимся при любом.Легко видеть что интеграл сходится пов любой области
где произвольно.Действительно для всех указаных значений и для всех
,
и так как
сходится, то выполнены условия признака Веерштрасса. Таким образом, в области
Интеграл
cходится равномерно.
Отсюда вытекает непрерывность гамма функции при.Докажем дифференцируемость этой функции при .Заметим что функция
непрерывна при и, и покажем,что интеграл:
сходится равномерно на каждом сегменте
, .
Выберем число так, чтобы
; тогда при .
Поэтому существует число такое, что
и на.
Но тогда на справедливо неравенство
и так как интеграл
сходится, то интеграл
сходится равномерно относительно на . Аналогично для существует такое число , что для всех выполняется неравенство
.
При таких и всех получим
,
откуда в силу признака сравнения следует, что интеграл
сходится равномерно относительно на . Наконец, интеграл
в котором подынтегральная функция непрерывна в области
,
очевидно, сходится равномерно относительно на . Таким образом, на интеграл
сходится равномерно, а, следовательно, гаммма функция бесконечно дифференцируема при любом и справедливо равенство
.
Относительно интеграла можна повторить теже рассуждения и заключить, что
По индукции доказывается, что Г-функция бесконечно дифференцируема прии для ее я -ой производной справедливо равенство
Изучим теперь поведение - функции и построим єскиз ее графика.
Из выражения для второй производной -функции видно, что для всех . Следовательно, возрастает. Поскольку
,
то по теореме Роля на сегменте [1,2] производная при и при , т. е. Монотонно убывает на и монотонно возрастает на . Далее, поскольку
, то при .
При из формулы
следует, что при .
Равенство
,
справедливое при , можно использовать при распространении - функции на отрицательное значение .
Положим для, что
.
Правая часть этого равенства определена для из (-1,0). Получаем, что так продолженная функция принимает на (-1,0) отрицательные значения и при , а также при функция .
Определив таким образом на , мы можем по той же формуле продолжить ее на интервал (-2,-1). На этом интервале продолжением окажется функция, принимающая положительные значения и такая, что при и . Продолжая этот процесс, определим функцию , имеющею разрывы в целочисленных точках (см. рис.1)
Отметим еще раз, что интеграл
определяет Г-функцию только при положительных значениях , продолжение на отрицательные значения осуществлено нами формально с помощью формулы приведения
.
4. Вычисление некоторых интегралов
Формула Стирлинга
Применим гамма функцию к вычислению интеграла:
где m > -1,n > -1.Полагая, что ,имеем
и на основании (2.2) имеем
(3.1)
В интеграле
Где k > -1,n > 0,достаточно положить
Интеграл
Где s > 0,разложить в ряд
=
где
- дзетта функция Римана
Рассмотрим неполные гамма функции (функции Прима)
связанные неравенством
Разлагая, в ряд имеем
Переходя к выводу формулы Стирлинга, дающей в частности приближенное значение n! при больших значениях n,рассмотрим предварительно вспомогательную функцию
(3.2)
Непрерывна на интервале (-1,) монотонно возрастает от до при изменении от до и обращаются в 0 при u = 0.Так как
то
при u > 0 и при u < 0, далее имеем
И так производная непрерывна и положительна во всем интервале ,удовлетворяет условию
Из предыдущего следует, что существует обратная функция,
определенная на интервале непрерывная и монотонно возрастающая в этом интервале,
Обращающаяся в 0 при v=0 и удовлетворяющая условие
(3.3)
Формулу Стирлинга выведем из равенства
полагая ,имеем
Положим далее
введенная выше обратная функция, удовлетворяющая условиям u = -1при ,и при .Замечая что(см.3.2)
имеем
,
полагая на конец,,получим
или
в пределе при т.е. при (см3.3)
откуда вытекает формула Стирлинга
которую можно взять в виде
(3.4)
где ,при
для достаточно больших полагают
(3.5)
вычисление же производится при помощи логарифмов
если целое положительное число, то
и (3.5)
превращается в приближенную формулу вычисления факториалов при больших значениях n
приведем без вывода более точную формулу
где в скобках стоит не сходящийся ряд.
5. Примеры вычисления интегралов
Для вычисления необходимы формулы:
Г()
Вычислить интегралы
Выводы
Гамма функции являются удобным средством для вычисления некоторых интегралов в частности многих из тех интегралов, которые не представимы в элементарных функциях.
Благодаря этому они широко применяются в математике и ее приложениях, в механике, термодинамике и в других отраслях современной науки.
Список литературы
1. Специальные функции и их приложения: Лебедев И.И.,М.,Гостехтериоиздат,1953
2. Математический анализ часть 2: Ильин О.А., Садовничий В.А., Сендов Бл.Х.,М.,”Московский университет”,1987
3. Сборник задач по математическому анализу: Демидович Б.П.,М.,Наука,1966
4. Интегралы и ряды специальные функции: Прудников А.П., Брычков Ю.А.,М.,Наука,1983
5. Специальные функции: Кузнецов, М.,”Высшая школа”, 1965
Подобные документы
Определение функций "бета", "гамма". Эйлеров интеграл первого и второго рода. Связь между функциями "бета" и "гамма". Формула Эйлера, интеграл Раабе. Основные свойства гамма-функции при ее определении. Отличие дифференцирования от интегрирования.
дипломная работа [167,9 K], добавлен 08.10.2011Класс функций, представимых в виде собственного либо несобственного интеграла, зависящего не только от формальной переменной, а и от параметра. Эти функции называются интегралами зависящими от параметра. К ним относятся гамма и бета функции Эйлера.
курсовая работа [851,0 K], добавлен 03.07.2008Несобственные интегралы первого, второго и третьего рода. Вычисление несобственных интегралов с помощью вычетов. Несобственные интегралы, содержащие параметр. Гамма-функция и бета-функция Эйлера. Критерий Коши и эквивалентные условия сходимости.
курсовая работа [1,5 M], добавлен 20.09.2013Вычисление относительной и абсолютной погрешности табличных определённых интегралов. Приближенные методы вычисления определённых интегралов: метод прямоугольников, трапеций, парабол (метод Симпсона). Оценка точности вычисления "не берущихся" интегралов.
курсовая работа [187,8 K], добавлен 18.05.2019Понятие определенного интеграла, его геометрический смысл. Численные методы вычисления определенных интегралов. Формулы прямоугольников и трапеций. Применение пакета Mathcad для вычисления интегралов, проверка результатов вычислений с помощью Mathcad.
курсовая работа [1,0 M], добавлен 11.03.2013Изучение способов нахождения пределов функций и их производных. Правило дифференцирования сложных функций. Исследование поведения функции на концах заданных промежутков. Вычисление площади фигуры при помощи интегралов. Решение дифференциальных уравнений.
контрольная работа [75,6 K], добавлен 23.10.2010Общие свойства эллиптических интегралов и эллиптических функций. Параллелограммы периодов, основные теоремы. Эллиптические функции второго порядка. Вычисление длины дуги эллипса, эллиптические координаты, сумма вычетов эллиптической функции.
курсовая работа [289,0 K], добавлен 26.04.2011Понятие и назначение интегралов, их классификация и разновидности. Вычисление интегралов от тригонометрических функций: методика, основные этапы, используемые инструменты. Интегралы, зависящие от параметра, их отличительные особенности и вычисление.
курсовая работа [1,1 M], добавлен 19.09.2011Нахождение неопределенных интегралов (с проверкой дифференцированием). Разложение подынтегральных дробей на простейшие. Вычисление определенных интегралов, представление их в виде приближенного числа. Вычисление площади фигуры, ограниченной параболой.
контрольная работа [123,7 K], добавлен 14.01.2015Постановка задачи вычисления значения определённых интегралов от заданных функций. Классификация методов численного интегрирования и изучение некоторых из них: методы Ньютона-Котеса (формула трапеций, формула Симпсона), квадратурные формулы Гаусса.
реферат [99,0 K], добавлен 05.09.2010