Вычисление определенного интеграла методами трапеций и средних прямоугольников

Введение, математическое обоснование и анализ задачи. Методы вычисления определенного интеграла: метод трапеций, метод средних прямоугольников. Составление алгоритма работы программы integral.pas. Результат работы написанной и откомпилированной программы.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 30.10.2010
Размер файла 115,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

БЕЛОРУССКИЙ АГРАРНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

КАФЕДРА ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

КОНТРОЛЬНАЯ РАБОТА

на тему

“Вычисление определенного интеграламетодами трапеций и средних прямоугольников”

Студента 2-го курса:

Полушкина О.А.

Научный руководитель:

Севернева Е.В.

Минск, 1997

Содержание

Введение, математическое обоснование и анализ задачи

Алгоритм и его описание

Листинг программы

Исходные данные. Результаты расчетов и анализ

Заключение и выводы

Список литературы

Введение, математическое обоснование и анализ задачи

Известно, что определенный интеграл функции типа

численно представляет собой площадь криволинейной трапеции ограниченной кривыми

x=0, y=a, y=b и y=

(Рис. 1). Есть два метода вычисления этой площади или определенного интеграла -- метод трапеций (Рис. 2) и метод средних прямоугольников (Рис. 3).

Рис. 1. Криволинейная трапеция.

Рис. 2. Метод трапеций

Рис. 3. Метод средних прямоугольников

По методам трапеций и средних прямоугольников соответственно интеграл равен сумме площадей прямоугольных трапеций, где основание трапеции какая-либо малая величина (точность), и сумма площадей прямоугольников, где основание прямоугольника какая-либо малая величина (точность), а высота определяется по точке пересечения верхнего основания прямоугольника, которое график функции должен пересекать в середине. Соответственно получаем формулы площадей -- для метода трапеций:

,

для метода средних прямоугольников:

.

Соответственно этим формулам и составим алгоритм.

Рис. 4. Алгоритм работы программы integral.pas.

Листинг программы

Программа написана на Tubro Pascla 6.0 для MS-DOS. Ниже приведен ее листинг:

program Integral;

uses

Crt, Dos;

var

dx,x1,x2,e,i:real;

function Fx(x:real):real;

begin

Fx:=2+x; {В этом месте запишите функцию, для вычисления интеграла.}

end;

procedure CountViaBar;

var

xx1,xx2:real;

c:longint;

begin

writeln('------------------------------------------------');

writeln('-->Метод средних прямоугольников.');

writeln('Всего итераций:',round(abs(x2-x1)/e));

i:=0;

for c:=1 to round(abs(x2-x1)/e) do begin

write('Итерация ',c,chr(13));

xx1:=Fx(x1+c*e);

xx2:=Fx(x1+c*e+e);

i:=i+abs(xx1+xx2)/2*e;

end;

writeln('------------------------------------------------');

writeln('Интеграл=',i);

end;

procedure CountViaTrap;

var

xx1,xx2,xx3:real;

c:longint;

begin

writeln('------------------------------------------------');

writeln('-->Метод трапеций.');

writeln('Всего итераций:',round(abs(x2-x1)/e));

i:=0;

for c:=1 to round(abs(x2-x1)/e) do begin

write('Итерация ',c,chr(13));

xx1:=Fx(x1+c*e);

xx2:=Fx(x1+c*e+e);

if xx2>xx1 then xx3:=xx1 else xx3:=xx2;

i:=i+abs(xx2-xx1)*e+abs(xx3)*e;

end;

writeln('------------------------------------------------');

writeln('Интеграл=',i);

end;

begin

writeln('------------------------------------------------');

writeln('-=Программа вычисления определенного интеграла=-');

writeln('Введите исходные значения:');

write('Начальное значение x (x1)=');Readln(x1);

write('Конечное значение x (x2)=');Readln(x2);

write('Точность вычисления (e)=');Readln(e);

CountViaBar;

CountViaTrap;

writeln('------------------------------------------------');

writeln('Спасибо за использование программы ;^)');

end.

Исходные данные. Результаты расчетов и анализ

Ниже приведен результат работы написанной и откомпилированной программы:

------------------------------------------------

-=Программа вычисления определенного интеграла=-

Введите исходные значения:

Начальное значение x (x1)=0

Конечное значение x (x2)=10

Точность вычисления (e)=0.01

------------------------------------------------

-->Метод средних прямоугольников.

Всего итераций:1000

------------------------------------------------

Интеграл= 7.0100000000E+01

------------------------------------------------

-->Метод трапеций.

Всего итераций:1000

------------------------------------------------

Интеграл= 7.0150000001E+01

------------------------------------------------

Спасибо за использование программы ;^)

Расчет проверялся для функции

,

а определенный интеграл брался от 0 до 10, точность 0,01.

В результате расчетов получаем:

Интеграл

.

Методом трапеций

.

Методом средних прямоугольников

.

Также был произведен расчет с точностью 0,1:

Интеграл

.

Методом трапеций

.

Методом средних прямоугольников

.

Заключение и выводы

Таким образом очевидно, что при вычислении определенных интегралов методами трапеций и средних прямоугольников не дает нам точного значения, а только приближенное.

Чем ниже задается численное значение точности вычислений (основание трапеции или прямоугольника, в зависимости от метода), тем точнее результат получаемый машиной. При этом, число итераций составляет обратно пропорциональное от численного значения точности. Следовательно для большей точности необходимо большее число итераций, что обуславливает возрастание затрат времени вычисления интеграла на компьютере обратно пропорционально точности вычисления.

Использование для вычисления одновременно двух методов (трапеций и средних прямоугольников) позволило исследовать зависимость точности вычислений при применении обоих методов.

Следовательно при понижении численного значения точности вычислений результаты расчетов по обеим методам стремятся друг к другу и оба к точному результату.

Список литературы.

Вольвачев А.Н., Крисевич В.С. Программирование на языке Паскаль для ПЭВМ ЕС. Минск.: 1989 г.

Зуев Е.А. Язык программирования Turbo Pascal. М.1992 г.

Скляров В.А. Знакомьтесь: Паскаль. М. 1988 г.


Подобные документы

  • Задача численного интегрирования функций. Вычисление приближенного значения определенного интеграла. Нахождение определенного интеграла методами прямоугольников, средних прямоугольников, трапеций. Погрешность формул и сравнение методов по точности.

    методичка [327,4 K], добавлен 01.07.2009

  • Математическая модель: определение интеграла и его геометрический смысл. Приближённые методы вычисления. Формула прямоугольников, трапеций, парабол. Программа для вычисления значения интеграла методом трапеций в среде пакета Matlab. Цикл if и for.

    контрольная работа [262,8 K], добавлен 05.01.2015

  • Выбор точных методов численного интегрирования при наибольшем количестве разбиений. Вычисление интеграла аналитически, методом средних прямоугольников, трапеций, методом Симпсона. Вычисление интеграла методом Гаусса: двухточечная и трехточечная схема.

    курсовая работа [366,2 K], добавлен 25.12.2012

  • Понятие определенного интеграла, его геометрический смысл. Численные методы вычисления определенных интегралов. Формулы прямоугольников и трапеций. Применение пакета Mathcad для вычисления интегралов, проверка результатов вычислений с помощью Mathcad.

    курсовая работа [1,0 M], добавлен 11.03.2013

  • Вид определенного интеграла от непрерывной на заданном отрезке функции. Сущность квадратурных формул. Нахождение численного значения интеграла с помощью методов левых и правых прямоугольников, трапеций, парабол. Выведение общей формулы Симпсона.

    презентация [120,3 K], добавлен 18.04.2013

  • Построение квадратурной формулы максимальной степени точности. Определение алгебраической степени точности указанной квадратурной формулы. Сравнительный анализ квадратурных формул средних прямоугольников и трапеций на примере вычисления интеграла.

    лабораторная работа [195,9 K], добавлен 21.12.2015

  • Математическое обоснование алгоритма вычисления интеграла. Принцип работы метода Монте–Карло. Применение данного метода для вычисления n–мерного интеграла. Алгоритм расчета интеграла. Генератор псевдослучайных чисел применительно к методу Монте–Карло.

    курсовая работа [100,4 K], добавлен 12.05.2009

  • Необходимое и достаточное условие существования определенного интеграла. Равенство определенного интеграла от алгебраической суммы (разности) двух функций. Теорема о среднем – следствие и доказательство. Геометрический смысл определенного интеграла.

    презентация [174,5 K], добавлен 18.09.2013

  • Вычисление относительной и абсолютной погрешности табличных определённых интегралов. Приближенные методы вычисления определённых интегралов: метод прямоугольников, трапеций, парабол (метод Симпсона). Оценка точности вычисления "не берущихся" интегралов.

    курсовая работа [187,8 K], добавлен 18.05.2019

  • Использование численных методов, позволяющих найти приближенное значение определенного интеграла с заданной точностью. Анализ формул трапеции и параболы (Симпсона). Основной принцип построения формул приближенного вычисления определенного интеграла.

    презентация [96,6 K], добавлен 18.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.