Графики функций. Производные и интегралы
Построение графика функции спроса и предложения, нахождение координаты точки равновесия. Вычисление производных. Исследование и построение графика данной функции. Вычисление неопределенного интеграла. Установление расходимости несобственного интеграла.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 21.10.2010 |
Размер файла | 192,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
- 13 -
Государственный университет управления
Институт заочного обучения
Специальность - Менеджмент
Контрольная работа
по дисциплине: Высшая математика
Выполнил студент Ганин Д.Ю.
Студенческий билет № 1211
Группа № УП4-1-98/2
Москва, 1999 г.
Задание №1
В штате гаража числится 54 водителя. Сколько свободных дней может иметь каждый водитель в месяц (30 дней), если ежедневно 25% автомашин из имеющихся 60 остаются в гараже для профилактического ремонта.
Решение:
машин ежедневно остается в гараже на профилактическом ремонте. |
||
машин с водителями ежедневно уходят в рейс. |
||
водителей из штата гаража ежедневно не выходит в рейс из-за профилактического ремонта автомашин. |
||
количество водителей в течение месяца, не выходящих в рейс из-за профилактического ремонта автомашин. |
||
дней в месяц каждый водитель из штата гаража не выходит в рейс из-за профилактического ремонта автомашин. |
||
Ответ: |
Каждый водитель из штата гаража в течение месяца может иметь свободных дней. |
Задание №2
Построить график функции спроса Q=QD(P) и предложения Q=QS(P) и найдите координаты точки равновесия, если , .
Решение:
Построим в плоскости POQ график функции спроса Q=QD(P) и предложения Q=QS(P). Для этого найдем координаты пересечения с осями координат:
С осью OP (Q=0): |
С осью OQ (P=0): |
||
Для Q=QS(P): |
Для Q=QD(P): |
||
Т.к. функции QS(P) и QD(P) - линейные функции, то их графиками являются прямые, для построения которых достаточно определить их точки пересечения с осями координат. Они найдены, значит можно производить построение графика (рис.1).
Найдем точку равновесия графиков функции спроса и предложения (М), в которой спрос равен предложению. Для этого решим систему:
,
из этой системы получаем:
,
тогда
,
значит координаты т.M.
Ответ: |
Координаты точки равновесия равны , |
Задание №3
Используя правила вычисления производных и таблицу, найдите производные следующих функций:
Решение:
Ответ: |
Производная заданной функции равна |
Задание №4
Используя дифференциал функции, найдите приближенное значение числа:
Решение:
Ответ: Приближенное значение заданного числа равно 1,975.
Задание №5
Исследуйте функцию и постройте ее график:
Решение:
1. Область определения данной функции: .
2. Найдем точки пересечения с осями координат:
С осью OY : |
С осью OX : |
|
, дробь равна нулю, если ее числитель равен нулю, т.е. |
||
Точка пересечения: |
Точки пересечения: , |
3. Т.к. все точки входят в область значений функции, то точек разрыва НЕТ.
4. Вертикальных асимптот у графика функции нет, т.к. нет точек разрыва. Правая и левая наклонные асимптоты имеют уравнение: , где:
т.к. правая и левая наклонные асимптоты совпадают, то уравнение имеет вид: , т.е. - уравнение горизонтальной асимптоты.
5. Найдем точки экстремума заданной функции. Для этого найдем ее первую производную:
Т.к. если у функции есть точка экстремума, то в этой точке первая производная функции равна нулю, т.е. :
,
дробь равна нулю, если ее числитель равен нулю, т.е. , отсюда , следовательно , значит точка - точка экстремума функции.
На участке производная > 0, значит, при , заданная функция возрастает.
На участке производная < 0, значит, при , заданная функция убывает (рис 2.).
Следовательно - точка максимума заданной функции .
6. Найдем участки выпуклости/вогнутости заданной функции. Для этого найдем ее вторую производную:
Т.к. если у функции есть точка перегиба, то в этой точке вторая производная функции равна нулю, т.е. :
,
дробь равна нулю, если ее числитель равен нулю, т.е. , значит , тогда , отсюда
Отсюда
, .
На участке производная >0, значит это участок вогнутости графика функции.
На участке производная >0, значит это тоже участок вогнутости графика функции.
Следовательно, при график заданной функции является вогнутым.
На участке производная <0, значит, при график заданной функции является выпуклым (рис. 3).
Следовательно, точки , - точки перегиба графика заданной функции .
Выполненные исследования заданной функции позволяют построить ее график (см. рис. 4).
Задание №6
Фирма производит товар двух видов в количествах и. Задана функция полных издержек . Цены этих товаров на рынке равны и . Определить, при каких объемах выпуска достигается максимальная прибыль, найти эту прибыль.
, ,
Решение:
Пусть - функция прибыли, тогда
Найдем первые частные производные функции :
, .
Найдем стационарные точки графика функции . Для этого решим систему:
Следовательно - стационарная точка. Проверим ее на экстремум, для этого введем обозначения:
, , ,
тогда , , , . Т.к. > 0, то экстремум есть, а т.к. < 0, то это максимум. Следовательно, при объемах выпуска и , достигается максимальная прибыль равная:
Ответ: и достигается при объемах выпуска и .
Задание №7
Вычислить неопределенный интеграл:
Решение:
Ответ:
Задание №8
Вычислить несобственный интеграл (или установить его расходимость) .
Решение:
Ответ: Данный несобственный интеграл - расходящийся.
Задание №9
Решить уравнение
Решение:
.
Разделив обе части на , получим . Проинтегрируем полученное уравнение . Представим , как , тогда
Ответ: Решением данного уравнения является .
Задание №10
Найти общее решение уравнения:
Решение:
Найдем корни характеристического уравнения: , тогда
,
следовательно , , тогда фундаментальную систему решений образуют функции:
,
Т.к. действительные и мнимые решения в отдельности являются решениями уравнения, то в качестве линейно независимых частей решений и , возьмем , , тогда общее решение однородного уравнения будет иметь вид:
Представим правую часть уравнения, как и сравним с выражением, задающим правую часть специального вида:
.
Имеем , , тогда т.к. - многочлен второй степени, то общий вид правой части: . Найдем частные решения:
, ,
Сравним коэффициенты при слева и справа, найдем , решив систему:
,
отсюда .
Тогда общее решение заданного неоднородного линейного уравнения имеет вид:
.
Ответ: .
Подобные документы
Вычисление пределов функций. Нахождение производные заданных функций, решение неопределенных интегралов. Исследование функции и построение ее графика. Особенности вычисления площади фигуры, ограниченной линиями с использованием определенного интеграла.
контрольная работа [283,1 K], добавлен 01.03.2011Нахождение производных функций, построение графика функции с помощью методов дифференциального исчисления, нахождение точки пересечения с осями координат. Исследование функции на возрастание и убывание, нахождение интегралов, установка их расходимости.
контрольная работа [130,5 K], добавлен 09.04.2010Вычисление предела функции, не используя правило Лопиталя. Нахождение производной функции и построение ее графика. Исследование неопределенных интегралов и выполнение проверки дифференцированием. Вычисление площади фигуры, ограниченной графиками функций.
контрольная работа [317,3 K], добавлен 25.03.2014Расчет неопределенных интегралов по частям и по формуле Ньютона-Лейбница. Вычисление несобственного интеграла или доказательство его расходимости. Расчет площади фигуры, ограниченной кардиоидой. Расстановка пределов двумя альтернативными способами.
контрольная работа [251,2 K], добавлен 28.03.2014Нахождение произведения для заданных множеств. Вычисление предела функции с использованием основных теорем. Раскрытие неопределенности с использованием правила Лопиталя. Нахождение производной и вычисление неопределенного интеграла методом подстановки.
контрольная работа [260,0 K], добавлен 02.02.2011Определение пределов функции с помощью Mathcad. Доказать, что предел данной функции в указанной точке не существует. Построение ее графика в окрестности указанной точки. Вычисление производных функции по определению в произвольной или фиксированной точке.
лабораторная работа [718,5 K], добавлен 25.12.2011Задача численного интегрирования функций. Вычисление приближенного значения определенного интеграла. Нахождение определенного интеграла методами прямоугольников, средних прямоугольников, трапеций. Погрешность формул и сравнение методов по точности.
методичка [327,4 K], добавлен 01.07.2009Поиск общего интеграла дифференциального уравнения. Расстановка пределов интегрирования. Координаты вершины параболы. Объем тела, ограниченного поверхностями. Вычисление криволинейного интеграла. Полный дифференциал функции. Вычисление дуги цепной линии.
контрольная работа [298,1 K], добавлен 28.03.2014Нахождение частных производных, градиента функции. Вычисление интеграла, переход от двойного интеграла к последовательному, пределов интегрирования. Общее и частное решение дифференциального уравнения второго порядка. Применение признака Даламбера.
контрольная работа [297,6 K], добавлен 11.05.2013Определение точки пересечения высот треугольника и координат вектора. Сущность базиса системы векторов и его доказательство. Определение производных функций, исследование ее и построение графика. Неопределенные интегралы и их проверка дифференцированием.
контрольная работа [168,7 K], добавлен 26.01.2010